Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473802

RESUMEN

Glucose-insulinotropic polypeptide (GIP) is an incretin hormone that induces insulin secretion and decreases blood glucose levels. In addition, it has been reported to suppress osteoclast formation. Native GIP is rapidly degraded by dipeptidyl peptidase-4 (DPP-4). (D-Ala2)GIP is a newly developed GIP analog that demonstrates enhanced resistance to DPP-4. This study aimed to evaluate the influence of (D-Ala2)GIP on osteoclast formation and bone resorption during lipopolysaccharide (LPS)-induced inflammation in vivo and in vitro. In vivo, mice received supracalvarial injections of LPS with or without (D-Ala2)GIP for 5 days. Osteoclast formation and bone resorption were evaluated, and TNF-α and RANKL expression were measured. In vitro, the influence of (D-Ala2)GIP on RANKL- and TNF-α-induced osteoclastogenesis, LPS-triggered TNF-α expression in macrophages, and RANKL expression in osteoblasts were examined. Compared to the LPS-only group, calvariae co-administered LPS and (D-Ala2)GIP led to less osteoclast formation, lower bone resorption, and decreased TNF-α and RANKL expression. (D-Ala2)GIP inhibited osteoclastogenesis induced by RANKL and TNF-α and downregulated TNF-α expression in macrophages and RANKL expression in osteoblasts in vitro. Furthermore, (D-Ala2)GIP suppressed the MAPK signaling pathway. The results suggest that (D-Ala2)GIP dampened LPS-triggered osteoclast formation and bone resorption in vivo by reducing TNF-α and RANKL expression and directly inhibiting osteoclastogenesis.


Asunto(s)
Resorción Ósea , Osteoclastos , Animales , Ratones , Osteoclastos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Lipopolisacáridos/farmacología , Glucosa/metabolismo , Resorción Ósea/metabolismo , Péptidos/metabolismo
2.
J Periodontal Res ; 58(6): 1261-1271, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37723604

RESUMEN

OBJECTIVE: We analyzed the localization and expression of Cluster of differentiation 40 ligand (CD40L) in murine periodontal tissue applied with the orthodontic force to determine the CD40L-expressing cells under mechanical stress. Furthermore, we investigated whether CD40-CD40L interaction played an important role in transducing mechanical stress between periodontal ligament (PDL) cells and cementoblasts and remodeling the periodontal tissue for its homeostasis. BACKGROUND: PDL is a complex tissue that contains heterogeneous cell populations and is constantly exposed to mechanical stress, such as occlusal force. CD40 is expressed on PDL cells and upregulated under mechanical stress. However, whether its ligand, CD40L, is upregulated in periodontal tissue in response to mechanical stress, and which functions the CD40-CD40L interaction induces by converting the force to biological functions between the cement-PDL complex, are not fully understood. METHODS: The orthodontic treatment was applied to the first molars at the left side of the upper maxillae of mice using a nickel-titanium closed-coil spring. Immunohistochemistry was performed to analyze the localization of CD40L in the periodontal tissue under the orthodontic force. Human cementoblasts (HCEM) and human PDL cells were stretched in vitro and analyzed CD40L and CD40 protein expression using flow cytometry. A GFP-expressing CD40L plasmid vector was transfected into HCEM (CD40L-HCEM). CD40L-HCEM was co-cultured with human PDL cells with higher alkaline phosphatase (ALP) activity (hPDS) or lower ALP (hPDF). After co-culturing, cell viability and proliferation were analyzed by propidium iodide (PI) staining and bromodeoxyuridine (BrdU) assay. Furthermore, the mRNA expression of cytodifferentiation- and extracellular matrix (ECM)-related genes was analyzed by real-time PCR. RESULTS: Immunohistochemistry demonstrated that CD40L was induced on the cells present at the cementum surface in periodontal tissue at the tension side under the orthodontic treatment in mice. The flow cytometry showed that the in vitro-stretching force upregulated CD40L protein expression on HCEM and CD40 protein expression on human PDL cells. Co-culturing CD40L-HCEM with hPDF enhanced cell viability and proliferation but did not alter the gene expression related to cytodifferentiation and ECM. In contrast, co-culturing CD40L-HCEM with hPDS upregulated cytodifferentiation- and ECM-related genes but did not affect cell viability and proliferation. CONCLUSION: We revealed that in response to a stretching force, CD40L expression was induced on cementoblasts. CD40L on cementoblasts may interact with CD40 on heterogeneous PDL cells at the necessary time and location, inducing cell viability, proliferation, and cytodifferentiation, maintaining periodontal tissue remodeling and homeostasis.


Asunto(s)
Antígenos CD40 , Ligando de CD40 , Ligamento Periodontal , Animales , Humanos , Ratones , Ligando de CD40/metabolismo , Células Cultivadas , Cemento Dental , Ligandos , Ligamento Periodontal/metabolismo , Estrés Mecánico , Antígenos CD40/metabolismo
3.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38069322

RESUMEN

Docosahexaenoic acid (DHA) is an omega-3 fatty acid that exerts physiological effects via G protein-coupled receptor 120 (GPR120). In our previous studies, we figured out the inhibitory effects of DHA on TNF-α (Tumor necrosis factor-α)-induced osteoclastogenesis via GPR120 in vivo. Moreover, DHA directly suppressed RANKL expression in osteoblasts via GPR120 in vitro. In this study, we generated bone marrow chimeric mice using GPR120 deficient mice (GPR120-KO) to study the inhibitory effects of DHA on bone resorption and osteoclast formation. Bone marrow cells of wild-type (WT) or GPR120-KO mice were transplanted into irradiated recipient mice, which were WT or GPR120 deficient mice. The resulting chimeric mice contained stromal cells from the recipient and bone marrow cells, including osteoclast precursors, from the donor. These chimeric mice were used to perform a series of histological and microfocus computed tomography (micro-CT) analyses after TNF-α injection for induction of osteoclast formation with or without DHA. Osteoclast number and bone resorption were found to be significantly increased in chimeric mice, which did not express GPR120 in stromal cells, compared to chimeric mice, which expressed GPR120 in stromal cells. DHA was also found to suppress specific signaling pathways. We summarized that DHA suppressed TNF-α-induced stromal-dependent osteoclast formation and bone resorption via GPR120.


Asunto(s)
Resorción Ósea , Osteoclastos , Animales , Ratones , Osteoclastos/metabolismo , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/metabolismo , Médula Ósea/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Resorción Ósea/genética , Resorción Ósea/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ligando RANK/metabolismo , Diferenciación Celular , Células de la Médula Ósea/metabolismo
4.
Cleft Palate Craniofac J ; 60(1): 98-104, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-34787488

RESUMEN

Diamond Blackfan anemia (DBA) is a chronic congenital form of erythrocytic hypoplasia in which erythroid precursor cell levels are low. DBA reflects ribosomal dysfunction and is accompanied by hematopoietic cell apoptosis, anemia, and various somatic symptoms. We report the characteristic symptoms of the craniofacial region and the orthodontic treatments of two DBA cases. Case 1 was a 12-year-old female. The typical physical and facial characteristics of DBA were lacking. On initial examination, she exhibited a skeletal Class II jaw and end to end molar relationships and a large overjet. An edgewise appliance was placed after extraction of the first maxillary premolars. After 3 years and 11 months, an appropriate overjet and overbite, rigid intercuspation, and an acceptable profile were evident without any clinical adverse effects. Case 2 was a 13-year-old female. She exhibited a skeletal Class I jaw relationship, a spaced dental arch, the maxillofacial dysplasia characteristic of Binder syndrome, hypoplasia of the right mandibular condyle, and labial protrusions of the maxillary and mandibular incisors. We placed an edgewise appliance and after 1 year and 7 months, the occlusion was optimal in the absence of any adverse effects. Our two DBA cases exhibited a broad spectrum of physical and dentofacial symptoms. Patients with DBA are often prescribed combined steroid/bisphosphonate therapies. Both agents are likely to affect alveolar bone remodeling after tooth extraction and orthodontic tooth movement. Careful consideration of medication with reference to various dentofacial characteristics is necessary.


Asunto(s)
Anemia de Diamond-Blackfan , Adolescente , Niño , Humanos , Anemia de Diamond-Blackfan/terapia , Ortodoncia Correctiva
5.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35163403

RESUMEN

Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine expressed by macrophages, monocytes, and T cells, and its expression is triggered by the immune system in response to pathogens and their products, such as endotoxins. TNF-α plays an important role in host defense by inducing inflammatory reactions such as phagocytes and cytocidal systems activation. TNF-α also plays an important role in bone metabolism and is associated with inflammatory bone diseases. TNF-α binds to two cell surface receptors, the 55kDa TNF receptor-1 (TNFR1) and the 75kDa TNF receptor-2 (TNFR2). Bone is in a constant state of turnover; it is continuously degraded and built via the process of bone remodeling, which results from the regulated balance between bone-resorbing osteoclasts, bone-forming osteoblasts, and the mechanosensory cell type osteocytes. Precise interactions between these cells maintain skeletal homeostasis. Studies have shown that TNF-α affects bone-related cells via TNFRs. Signaling through either receptor results in different outcomes in different cell types as well as in the same cell type. This review summarizes and discusses current research on the TNF-α and TNFR interaction and its role in bone-related cells.


Asunto(s)
Remodelación Ósea , Osteoblastos/metabolismo , Osteocitos/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Humanos
6.
Int J Mol Sci ; 23(6)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35328385

RESUMEN

Micro-osteoperforations (MOPs) have been reported to accelerate orthodontic tooth movement (OTM), and tumor necrosis factor (TNF)-α has been reported to play a crucial role in OTM. In this report, the influence of MOPs during OTM was analyzed. We evaluated the expression of TNF-α with and without MOPs by RT-PCR analysis. A Ni-Ti closed coil spring was fixed between the maxillary left first molar and the incisors as an OTM mouse model to move the first molar in the mesial direction. MOPs were prepared on the lingual side and mesial side of the upper first molars. Furthermore, to investigate the target cell of TNF-α for osteoclast formation during OTM with MOPs in vivo, we created four types of chimeric mice in which bone marrow of wild-type (WT) or TNF receptor 1- and 2-deficient mice (KO) was transplanted into lethally irradiated WT or KO mice. The results showed that MOPs increased TNF-α expression, the distance of tooth movement and osteoclast formation significantly. Furthermore, mice with TNF-α-responsive stromal cells showed a significant increase in tooth movement and number of osteoclasts by MOPs. We conclude that MOPs increase TNF-α expression, and tooth movement is dependent on TNF-α-responsive stromal cells.


Asunto(s)
Técnicas de Movimiento Dental , Factor de Necrosis Tumoral alfa , Animales , Ratones , Diente Molar/metabolismo , Osteoclastos/metabolismo , Células del Estroma/metabolismo , Técnicas de Movimiento Dental/métodos , Factor de Necrosis Tumoral alfa/metabolismo
7.
J Periodontal Res ; 56(4): 761-773, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33760254

RESUMEN

BACKGROUND AND OBJECTIVE: Root resorption is an unavoidable side effect of orthodontic tooth movement. The mechanism of root resorption is similar to bone resorption; the odontoclasts share similar characteristics with osteoclasts (OCs). MicroRNAs (miRNAs) such as miR-155-5p play an important role in OC differentiation, but the underlying molecular mechanism of miR-155-5p in this process is not fully understood. We found that the miR-155-5p seed sequences were complementary to a sequence conserved in the 3-untranslated region of CXCR2 mRNA. In this study, we explored the molecular mechanism underlying the effect of miR-155-5p on OC differentiation by targeting CXCR2. MATERIALS AND METHODS: In this study, we divided the orthodontic patients into mild, moderate, and severe groups according to the severity of root resorption. The gingival crevicular fluid (GCF) of patients in different groups was collected, and the expression levels of dentin phosphoprotein (DPP) were detected by ELISA, and the expression levels of CXCR2 and miR-155-5p in GCF were detected by real-time quantitative PCR (qRT-PCR). The relationship between miR-155-5p and CXCR2 was verified by double luciferase. We analyzed changes of CXCR2 and miR-155-5p expression after transfection of miR-155-5p mimic and inhibitor into RAW264.7 cells induced by receptor activator of nuclear factor-κB ligand (RANKL) through qRT-PCR and western blotting. The effect of miR-155-5p on OC differentiation was evaluated by tartrate-resistant acid phosphatase (TRAP) staining. QRT-PCR and western blotting were used to analyze expression of the osteoclastic bone resorption-related enzymes carbonic anhydrase 2 (CA II), matrix metalloproteinase-9 (MMP-9), and cathepsin K. To further confirm the direct targeting effect of CXCR2 by miR-155-5p, we blocked CXCR2 using si-CXCR2 in RANKL-induced RAW264.7 cells. RESULTS: Dentin phosphoprotein levels were consistent with the trend of miR-155-5p changes, and the trend of CXCR2 expression was opposite to miR-155-5p changes. miR-155-5p can be directly targeted to act on CXCR2. The expression of miR-155-5p was significantly downregulated in differentiated OCs. MiR-155-5p inhibited OC differentiation, and downregulated CA II, MMP-9, and cathepsin K expression at the protein and mRNA levels. CONCLUSIONS: In summary, the results of this study suggested that miR-155-5p inhibited OC differentiation by targeting CXCR2, thus reducing root resorption in orthodontics. MiR-155-5p can be used as an effective target for avoiding or reducing the degree of root resorption in orthodontic treatment.


Asunto(s)
Resorción Ósea , MicroARNs , Resorción Radicular , Resorción Ósea/genética , Diferenciación Celular , Humanos , MicroARNs/genética , Osteoclastos , Ligando RANK/genética , Resorción Radicular/genética
8.
Int J Mol Sci ; 22(12)2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205264

RESUMEN

Patients with type 2 diabetes have an increased risk of fracture compared to the general population. Glucose absorption is accelerated by incretin hormones, which induce insulin secretion from the pancreas. The level of the incretin hormone, glucagon-like peptide-1 (GLP-1), shows an immediate postprandial increase, and the circulating level of intact GLP-1 is reduced rapidly by dipeptidyl peptidase-4 (DPP-4)-mediated inactivation. Therefore, GLP-1 receptor agonists and DPP-4 inhibitors are effective in the treatment of type 2 diabetes. However, these incretin-related diabetic agents have been reported to affect bone metabolism, including bone formation and resorption. These agents enhance the expression of bone markers, and have been applied to improve bone quality and bone density. In addition, they have been reported to suppress chronic inflammation and reduce the levels of inflammatory cytokine expression. Previously, we reported that these incretin-related agents inhibited both the expression of inflammatory cytokines and inflammation-induced bone resorption. This review presents an overview of current knowledge regarding the effects of incretin-related diabetes drugs on osteoblast differentiation and bone formation as well as osteoclast differentiation and bone resorption. The mechanisms by which incretin-related diabetes drugs regulate bone formation and bone resorption are also discussed.


Asunto(s)
Resorción Ósea , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Receptor del Péptido 1 Similar al Glucagón/agonistas , Osteogénesis/efectos de los fármacos , Animales , Diabetes Mellitus/tratamiento farmacológico , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Humanos
9.
Int J Mol Sci ; 21(14)2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708317

RESUMEN

The process of bone remodeling is the result of the regulated balance between bone cell populations, namely bone-forming osteoblasts, bone-resorbing osteoclasts, and the osteocyte, the mechanosensory cell type. Osteoclasts derived from the hematopoietic stem cell lineage are the principal cells involved in bone resorption. In osteolytic diseases such as rheumatoid arthritis, periodontitis, and osteoporosis, the balance is lost and changes in favor of bone resorption. Therefore, it is vital to elucidate the mechanisms of osteoclast formation and bone resorption. It has been reported that osteocytes express Receptor activator of nuclear factor κΒ ligand (RANKL), an essential factor for osteoclast formation. RANKL secreted by osteocytes is the most important factor for physiologically supported osteoclast formation in the developing skeleton and in pathological bone resorption such as experimental periodontal bone loss. TNF-α directly enhances RANKL expression in osteocytes and promotes osteoclast formation. Moreover, TNF-α enhances sclerostin expression in osteocytes, which also increases osteoclast formation. These findings suggest that osteocyte-related cytokines act directly to enhance osteoclast formation and bone resorption. In this review, we outline the most recent knowledge concerning bone resorption-related cytokines and discuss the osteocyte as the master regulator of bone resorption and effector in osteoclast formation.


Asunto(s)
Resorción Ósea/metabolismo , Citocinas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Osteoclastos/metabolismo , Osteocitos/metabolismo , Osteogénesis/fisiología , Transducción de Señal/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Artritis Reumatoide/metabolismo , Citocinas/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Osteogénesis/efectos de los fármacos , Osteoporosis/metabolismo , Osteoprotegerina/metabolismo , Osteoprotegerina/farmacología , Periodontitis/metabolismo , Ligando RANK/metabolismo , Transducción de Señal/efectos de los fármacos
10.
Int J Mol Sci ; 21(3)2020 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-32046264

RESUMEN

Interleukin (IL)-33 is a member of the IL-1 family, which acts as an alarmin. Several studies suggested that IL-33 inhibited osteoclastogenesis and bone resorption. Tumor necrosis factor-α (TNF-α) is considered a direct inducer of osteoclastogenesis. However, there has been no report regarding the effect of IL-33 on TNF-α-induced osteoclastogenesis and bone resorption. The objective of this study is to investigate the role of IL-33 on TNF-α-induced osteoclastogenesis and bone resorption. In an in vitro analysis of osteoclastogenesis, osteoclast precursors, which were derived from bone marrow cells, were treated with or without IL-33 in the presence of TNF-α. Tartrate-resistant acid phosphatase (TRAP) staining solution was used to assess osteoclast formation. In an in vivo analysis of mouse calvariae, TNF-α with or without IL-33 was subcutaneously administrated into the supracalvarial region of mice daily for 5 days. Histological sections were stained for TRAP, and osteoclast numbers were determined. Using micro-CT reconstruction images, the ratio of bone destruction area on the calvariae was evaluated. The number of TRAP-positive cells induced by TNF-α was significantly decreased with IL-33 in vitro and in vivo. Bone resorption was also reduced. IL-33 inhibited IκB phosphorylation and NF-κB nuclear translocation. These results suggest that IL-33 inhibited TNF-α-induced osteoclastogenesis and bone resorption.


Asunto(s)
Resorción Ósea/inducido químicamente , Resorción Ósea/tratamiento farmacológico , Interleucina-33/farmacología , Interleucina-33/uso terapéutico , Osteoclastos/citología , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Animales , Técnica del Anticuerpo Fluorescente , Immunoblotting , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Osteoclastos/metabolismo , Fosforilación/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Int J Mol Sci ; 21(17)2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32854340

RESUMEN

Osteoporosis morphology is characterized by bone resorption and decreases in micro-architecture parameters. Anti-osteoporosis therapy targets osteoclasts because bone resorption is a unique function of osteoclasts. Anti-c-fms antibodies against the receptor for macrophage colony-stimulating factor (M-CSF) inhibit osteoclast formation and bone resorption in vitro and in vivo. However, the effect of anti-c-fms antibodies on bone resorption in ovariectomized (OVX) mice is unknown. In this study, we evaluated the effect of anti-c-fms antibodies on osteoclast formation and bone resorption in osteoblast-osteoclast precursor co-culture in vitro and in OVX mice. Osteoblast and osteoclast precursor co-cultures treated with anti-c-fms antibodies showed significantly inhibited osteoclast formation, while cultures without anti-c-fms antibody treatment showed osteoclast formation. However, anti-c-fms antibodies did not change the receptor activator of nuclear factor kappa-B ligand (RANKL) or osteoprotegrin (OPG) expression during osteoblast and osteoclast differentiation in vitro. These results indicate that anti-c-fms antibodies directly affected osteoclast formation from osteoclast precursors in co-culture. OVX mice were treated with intraperitoneal injections of anti-c-fms antibody. The trabecular bone structure of the femur was assessed by micro-computer tomography. The anti-c-fms antibody inhibited osteoclast formation and bone loss compared with PBS-treated OVX mice. These results indicate potential for the therapeutic application of anti-c-fms antibodies for postmenopausal osteoporosis.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Resorción Ósea/prevención & control , Osteoblastos/citología , Osteoclastos/citología , Receptor de Factor Estimulante de Colonias de Macrófagos/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/farmacología , Resorción Ósea/diagnóstico por imagen , Resorción Ósea/etiología , Resorción Ósea/metabolismo , Hueso Esponjoso/diagnóstico por imagen , Hueso Esponjoso/efectos de los fármacos , Hueso Esponjoso/metabolismo , Diferenciación Celular/efectos de los fármacos , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Femenino , Inyecciones Intraperitoneales , Ratones , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteoprotegerina/metabolismo , Ovariectomía , Ligando RANK/metabolismo , Microtomografía por Rayos X
12.
Calcif Tissue Int ; 103(4): 431-442, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29845409

RESUMEN

C-X-C motif chemokine 12 (CXCL12) belongs to the family of CXC chemokines. Lipopolysaccharide (LPS) induces inflammation-induced osteoclastogenesis and bone resorption, and in recent years, stimulatory effects of CXCL12 on bone resorption have also been reported. In the present study, we investigated the effects of CXCL12 on LPS-induced osteoclastogenesis and bone resorption. LPS was administered with or without CXCL12 onto mouse calvariae by daily subcutaneous injection. Numbers of osteoclasts and bone resorption were significantly elevated in mice co-administered LPS and CXCL12 compared with mice administered LPS alone. Moreover, receptor activator of NF-kB ligand (RANKL) and tumor necrosis factor-α (TNF-α) mRNA levels were higher in mice co-administered LPS and CXCL12 compared with mice administered LPS alone. These in vitro results confirmed a direct stimulatory effect of CXCL12 on RANKL- and TNF-α-induced osteoclastogenesis. Furthermore, TNF-α and RANKL mRNA levels were elevated in macrophages and osteoblasts, respectively, co-treated in vitro with CXCL12 and LPS, in comparison with cells treated with LPS alone. Our results suggest that CXCL12 enhances LPS-induced osteoclastogenesis and bone resorption in vivo through a combination of increasing LPS-induced TNF-α production by macrophages, increasing RANKL production by osteoblasts, and direct enhancement of osteoclastogenesis.


Asunto(s)
Resorción Ósea/metabolismo , Quimiocina CXCL12/metabolismo , Lipopolisacáridos/toxicidad , Osteogénesis/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteogénesis/efectos de los fármacos
13.
Eur J Orthod ; 37(1): 87-94, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25074244

RESUMEN

OBJECTIVES: Interleukin-4 (IL-4) is a recognized immunomodulatory cytokine that regulates bone homeostasis. However, the influence of IL-4 on orthodontic tooth movement (OTM) and subsequent root resorption is still unknown. Therefore, the purpose of this study was to investigate the effect of IL-4 on tooth movement and its associated root resorption in a mouse model. MATERIALS AND METHODS: The maxillary first molars of four male mice for each experimental group were subjected to mesial force by a nickel titanium coil spring for 12 days. Control mice were not given appliances and injections. Varying doses of IL-4 were injected locally, adjacent to the first molar. Two sets of experiments were designed. The first set was composed of three groups: the control, treatment with phosphate-buffered saline (PBS), or 1.5 µg/day of IL-4. The second set was composed of five groups: the control, treatment with 0 (PBS only), 0.015, 0.15, or 1.5 µg/day of IL-4. The distance of OTM was measured and tartrate-resistant acid phosphatase positive cells along the loaded alveolar bone and root surface were identified. The root resorption associated with OTM was evaluated by a scanning electron microscope. RESULTS: The amount of OTM and the number of osteoclasts were significantly decreased in the IL-4-treated mice. Moreover, IL-4 significantly suppressed force-induced odontoclasts and root resorption. CONCLUSION: IL-4 inhibits tooth movement and prevents root resorption in the mouse model. These results suggest that IL-4 could be used as a useful adjunct to regulate the extent of OTM and also to control root resorption.


Asunto(s)
Interleucina-4/uso terapéutico , Resorción Radicular/prevención & control , Técnicas de Movimiento Dental/efectos adversos , Fosfatasa Ácida/metabolismo , Proceso Alveolar/efectos de los fármacos , Proceso Alveolar/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Interleucina-4/administración & dosificación , Isoenzimas/metabolismo , Masculino , Ratones Endogámicos C57BL , Diente Molar/efectos de los fármacos , Osteoclastos/citología , Resorción Radicular/etiología , Resorción Radicular/patología , Fosfatasa Ácida Tartratorresistente , Raíz del Diente/efectos de los fármacos , Soporte de Peso
14.
Sleep Breath ; 18(4): 837-44, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24526386

RESUMEN

PURPOSE: Both obstructive sleep apnea syndrome (OSAS) and sleep bruxism (SB) are commonly related to arousal events. In this study, we examined the effect of SB on the sleep architecture and investigated the relationship between SB and sleep respiratory events in patients with OSAS. METHODS: Patients with OSAS (n=67) in whom apnea/hypopnea occurred five or more times per hour were recruited to this study. Healthy volunteers (n=16) were recruited as controls. None of the healthy volunteers had any sleep disorders or medical disorders, nor had they taken any medication or alcohol. Data were collected by standard polysomnography during overnight sleep tests in a dark, quiet room. RESULTS: The frequency of SB was higher in the OSAS than in the control group. The risk of SB was significantly higher in the OSAS than in the control group (odds ratio, 3.96; 95% confidence interval, 1.03-15.20; P<0.05). Apnea/hypopnea and desaturation events occurred significantly more frequently in patients with than without SB. The frequency of the phasic type of SB correlated positively with that of obstructive apnea, micro-arousal, and oxygen desaturation. The frequency of SB events during micro-arousal events consequent on apnea/hypopnea events was significantly higher in the OSAS than in the control group. CONCLUSIONS: We found that patients with OSAS have a high risk of SB. In particular, this is the first report relating phasic-type SB to obstructive apnea events. This relationship suggests that improvement in OSAS might prevent exacerbations of SB.


Asunto(s)
Polisomnografía , Apnea Obstructiva del Sueño/diagnóstico , Apnea Obstructiva del Sueño/epidemiología , Bruxismo del Sueño/diagnóstico , Bruxismo del Sueño/epidemiología , Adulto , Anciano , Comorbilidad , Femenino , Humanos , Japón , Masculino , Persona de Mediana Edad , Valores de Referencia , Factores de Riesgo , Fases del Sueño , Estadística como Asunto
15.
ScientificWorldJournal ; 2014: 617032, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24574904

RESUMEN

Mechanical force loading exerts important effects on the skeleton by controlling bone mass and strength. Several in vivo experimental models evaluating the effects of mechanical loading on bone metabolism have been reported. Orthodontic tooth movement is a useful model for understanding the mechanism of bone remodeling induced by mechanical loading. In a mouse model of orthodontic tooth movement, TNF-α was expressed and osteoclasts appeared on the compressed side of the periodontal ligament. In TNF-receptor-deficient mice, there was less tooth movement and osteoclast numbers were lower than in wild-type mice. These results suggest that osteoclast formation and bone resorption caused by loading forces on the periodontal ligament depend on TNF-α. Several cytokines are expressed in the periodontal ligament during orthodontic tooth movement. Studies have found that inflammatory cytokines such as IL-12 and IFN-γ strongly inhibit osteoclast formation and tooth movement. Blocking macrophage colony-stimulating factor by using anti-c-Fms antibody also inhibited osteoclast formation and tooth movement. In this review we describe and discuss the effect of cytokines in the periodontal ligament on osteoclast formation and bone resorption during mechanical force loading.


Asunto(s)
Resorción Ósea/metabolismo , Citocinas/metabolismo , Osteoclastos/metabolismo , Periodoncio/metabolismo , Estrés Mecánico , Migración del Diente/metabolismo , Animales , Remodelación Ósea/fisiología , Resorción Ósea/patología , Humanos , Osteoclastos/patología , Ligamento Periodontal/metabolismo , Ligamento Periodontal/patología , Periodoncio/patología , Migración del Diente/patología
16.
J Dent Sci ; 19(2): 828-836, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38618134

RESUMEN

Background/purpose: The number of middle-aged and elderly orthodontic patients is increasing due to changes in age composition. It is important to investigate the detailed mechanisms of bone remodeling in orthodontic tooth movement (OTM) in the elderly. However, there are few reports on the mechanism of tooth movement in the elderly. The purpose of the present study was to analyze OTM and osteoclastogenesis in aged mice and to elucidate the mechanism. Materials and methods: It has been reported that tumor necrosis factor (TNF)-α plays an important role in osteoclast formation and OTM. First, 8-week-old and 78-week-old male C57BL/6J mice were subcutaneously injected with TNF-α into the calvaiae, and micro-CT, tartrate-resistant acid phosphatase (TRAP) staining, and real-time PCR were performed to evaluate osteoclast formation and bone resorption. Furthermore, osteoclastogenesis by TNF-α and receptor activator of nuclear factor-kappa B ligand (RANKL) using bone marrow cells was evaluated in vitro. Finally, a nickel-titanium closed-coil spring was attached, mesial movement of the maxillary left first molar was performed, and tooth movement distance and osteoclast formation were evaluated. Results: Compared to 8-week-old mice, 78-week-old mice had decreased TNF-α-induced bone resorption, osteoclastogenesis, and TRAP and cathepsin K expression in the calvariae. In vitro osteoclast formation also decreased in 78-week-old mice. Furthermore, tooth movement distance and osteoclastogenesis were reduced. Conclusion: OTM decreased in aged mice, which was shown to be caused by a decrease in osteoclastogenesis. Therefore, it was suggested that it is necessary to keep in mind that tooth movement may be suppressed when treating elderly patients.

17.
J Clin Med ; 13(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38792293

RESUMEN

Background: We investigated treatment outcomes and post-treatment stability in 10 patients with an anterior open bite and nonsurgical orthodontics. Methods: The patients underwent maxillary molar intrusion using temporary anchorage devices (TADs) to deepen the overbite due to mandibular autorotation. Lateral cephalograms and dental cast models were obtained before treatment (T0), immediately after it (T1), and >1 year after it (T2). Skeletal and dental cephalometric changes and three-dimensional movements of the maxillary dentitions were evaluated. Results: At T0, cephalometric analysis indicated that patients had skeletal class I with tendencies for a class II jaw relationship and a skeletal open bite. During active treatment (T0 to T1), the maxillary first molar intruded by 1.6 mm, the mandibular first molar extruded by 0.3 mm, the Frankfort-mandibular plane angle decreased by 1.1°, and the overbite increased by 4.1 mm. Statistically significant changes were observed in the amount of vertical movement of the maxillary first molar, Frankfort-mandibular plane angle, and overbite. Three-dimensional (3D) dental cast analysis revealed that the maxillary first and second molars intruded, whereas the anterior teeth extruded, with the second premolar as an infection point. In addition, the maxillary molar was tipped distally by 2.9° and rotated distally by 0.91°. Statistically significant changes were observed in the amount of vertical movement of the central incisor, lateral incisor, canine and first molar, and molar angulation. From T1 to T2, no significant changes in cephalometric measurements or the 3D position of the maxillary dentition were observed. The maxillary and mandibular dentitions did not significantly change during post-treatment follow-up. Conclusions: Maxillary molar intrusion using mini-screws is an effective treatment for open bite correction, with the achieved occlusion demonstrating 3D stability at least 1 year after treatment.

18.
Cell Mol Neurobiol ; 33(7): 885-92, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23801193

RESUMEN

Pituitary adenylate cyclase-activating peptide (PACAP) is widely distributed throughout the nervous system. PACAP not only acts as a neurotransmitter but also elicits a broad spectrum of biological action via the PACAP-specific receptor, PAC1. However, no studies have investigated PACAP and PAC1 in the periodontal ligament (PDL), so we aimed to perform this investigation in rats after tooth luxation. In the PDL of an intact first molar, there are few osteoclasts and osteoblasts. However, at days 3 and 5 after luxation, large PAC1-positive cells, thought to be osteoclasts because of their expression of the osteoclast marker, tartrate-resistant acid phosphatase, were detected in appreciable numbers. Osteoblast numbers increased dramatically on day 7 after luxation, and PAC1-positive mononuclear small cells were increased at day 14, many of which expressed the osteoblast marker, alkaline phosphatase. PACAP-positive nerve fibers were rarely detected in the PDL of intact first molars, but were increasingly evident at this site on days 5 and 7 after luxation. Double-immunofluorescence analysis demonstrated the relationship between PACAP-positive nerve fibers and PAC1-positive osteoclasts/-blasts in the PDL. At 5 days after luxation, PACAP-positive nerve fibers appeared in close proximity to PAC1-positive osteoclasts. At 7 days after luxation, PACAP-positive nerve fibers appeared in close proximity to PAC1-positive osteoblasts. These results suggest that PACAP may have effects on osteoclasts and osteoblasts in the PDL after tooth luxation and thus regulate bone remodeling after these types of injury.


Asunto(s)
Ligamento Periodontal/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Avulsión de Diente/metabolismo , Animales , Recuento de Células , Técnica del Anticuerpo Fluorescente , Masculino , Fibras Nerviosas/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patología , Osteoclastos/metabolismo , Osteoclastos/patología , Ligamento Periodontal/inervación , Ratas , Ratas Sprague-Dawley , Avulsión de Diente/patología
19.
Clin Dev Immunol ; 2013: 181849, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23762085

RESUMEN

Tumor necrosis factor- α (TNF- α ) is a cytokine produced by monocytes, macrophages, and T cells and is induced by pathogens, endotoxins, or related substances. TNF- α may play a key role in bone metabolism and is important in inflammatory bone diseases such as rheumatoid arthritis. Cells directly involved in osteoclastogenesis include macrophages, which are osteoclast precursor cells, osteoblasts, or stromal cells. These cells express receptor activator of NF- κ B ligand (RANKL) to induce osteoclastogenesis, and T cells, which secrete RANKL, promote osteoclastogenesis during inflammation. Elucidating the detailed effects of TNF- α on bone metabolism may enable the identification of therapeutic targets that can efficiently suppress bone destruction in inflammatory bone diseases. TNF- α is considered to act by directly increasing RANK expression in macrophages and by increasing RANKL in stromal cells. Inflammatory cytokines such as interleukin- (IL-) 12, IL-18, and interferon- γ (IFN- γ ) strongly inhibit osteoclast formation. IL-12, IL-18, and IFN- γ induce apoptosis in bone marrow cells treated with TNF- α in vitro, and osteoclastogenesis is inhibited by the interactions of TNF- α -induced Fas and Fas ligand induced by IL-12, IL-18, and IFN- γ . This review describes and discusses the role of cells concerned with osteoclast formation and immunological reactions in TNF- α -mediated osteoclastogenesis in vitro and in vivo.


Asunto(s)
Artritis Reumatoide/inmunología , Resorción Ósea/inmunología , Huesos/inmunología , Osteoclastos/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Artritis Reumatoide/patología , Resorción Ósea/patología , Huesos/efectos de los fármacos , Huesos/patología , Expresión Génica , Humanos , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-12/genética , Interleucina-12/inmunología , Interleucina-18/genética , Interleucina-18/inmunología , Osteoblastos/efectos de los fármacos , Osteoblastos/inmunología , Osteoblastos/patología , Osteoclastos/efectos de los fármacos , Osteoclastos/patología , Ligando RANK/genética , Ligando RANK/inmunología , Células del Estroma/efectos de los fármacos , Células del Estroma/inmunología , Células del Estroma/patología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/patología , Factor de Necrosis Tumoral alfa/farmacología
20.
Front Endocrinol (Lausanne) ; 14: 1121727, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293482

RESUMEN

The skeleton is an organ of dual functionality; on the one hand, it provides protection and structural competence. On the other hand, it participates extensively in coordinating homeostasis globally given that it is a mineral and hormonal reservoir. Bone is the only tissue in the body that goes through strategically consistent bouts of bone resorption to ensure its integrity and organismal survival in a temporally and spatially coordinated process, known as bone remodeling. Bone remodeling is directly enacted by three skeletal cell types, osteoclasts, osteoblasts, and osteocytes; these cells represent the acting force in a basic multicellular unit and ensure bone health maintenance. The osteocyte is an excellent mechanosensory cell and has been positioned as the choreographer of bone remodeling. It is, therefore, not surprising that a holistic grasp of the osteocyte entity in the bone is warranted. This review discusses osteocytogenesis and associated molecular and morphological changes and describes the osteocytic lacunocanalicular network (LCN) and its organization. We highlight new knowledge obtained from transcriptomic analyses of osteocytes and discuss the regulatory role of osteocytes in promoting osteoclastogenesis with an emphasis on the case of osteoclastogenesis in anosteocytic bones. We arrive at the conclusion that osteocytes exhibit several redundant means through which osteoclast formation can be initiated. However, whether osteocytes are true "orchestrators of bone remodeling" cannot be verified from the animal models used to study osteocyte biology in vivo. Results from studying osteocyte biology using current animal models should come with the caveat that these models are not osteocyte-specific, and conclusions from these studies should be interpreted cautiously.


Asunto(s)
Resorción Ósea , Osteogénesis , Animales , Osteoclastos/metabolismo , Huesos/metabolismo , Resorción Ósea/metabolismo , Osteocitos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA