RESUMEN
Delicate variances in the translational machinery affect how efficiently different organisms approach protein synthesis. Determining the scale of this effect, however, requires knowledge on the differences of mistranslation levels. Here, we used a dual-luciferase reporter assay cloned into a broad host range plasmid to reveal the translational fidelity profiles of Pseudomonas putida, Pseudomonas aeruginosa and Escherichia coli. We observed that these profiles are surprisingly different, whereas species more prone to translational frameshifting are not necessarily more prone to stop codon readthrough. As tRNA modifications are among the factors that have been implicated to affect translation accuracy, we also show that translational fidelity is context-specifically influenced by pseudouridines in the anticodon stem-loop of tRNA, but the effect is not uniform between species.
Asunto(s)
Anticodón , Seudouridina , Anticodón/genética , Codón , Escherichia coli/genética , Procesamiento Postranscripcional del ARN , ARN de Transferencia/genéticaRESUMEN
The biofilm of Pseudomonas putida is complexly regulated by several intercellular and extracellular factors. The cell surface adhesin LapA of this bacterium is a central factor for the biofilm and, consequently, the regulation of lapA expression, for example, by Fis. It has been recently shown that peptides in growth media enhance the formation of P. putida biofilm, but not as a source of carbon and nitrogen. Moreover, the peptide-dependent biofilm appeared especially clearly in the fis-overexpression strain, which also has increased LapA. Therefore, we investigate here whether there is a relationship between LapA and peptide-dependent biofilm. The P. putida strains with inducible lapA expression and LapA without the vWFa domain, which is described as a domain similar to von Willebrand factor domain A, were constructed. Thereafter, the biofilm of these strains was assessed in growth media containing extracellular peptides in the shape of tryptone and without it. We show that the vWFa domain in LapA is necessary for biofilm enhancement by the extracellular peptides in the growth medium. The importance of vWFa in LapA was particularly evident for the fis-overexpression strain F15. The absence of the vWFa domain diminished the positive effect of Fis on the F15 biofilm.
Asunto(s)
Pseudomonas putida , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Regulación Bacteriana de la Expresión Génica , Péptidos/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismoRESUMEN
The biological treatment of oil refinery effluents in wastewater treatment plants (WWTPs) relies on specialized bacteria contributing to remove organic load, nitrogen, sulfur, and phosphorus compounds. Knowledge about bacterial dynamics in WWTPs and how they affect the performance of the wastewater treatment is limited, particularly in tropical countries. The bacterial communities from three compartments of an oil refinery WWTP in Uran, India, were assessed using 16S-metabarcoding, in winter and monsoon seasons, upstream (from the surge pond) and downstream the biotower (clarifier and guard pond), to understand the effects of seasonal variations in WWTP's efficiency. The organic load and ammonia levels of the treated wastewater increased by 3- and 9-fold in the monsoon time-point. A decreased abundance and diversity of 47 genera (325 OTUs) comprising ammonia and nitrite oxidizing bacteria (AOB, NOB, denitrifiers) was observed in the monsoon season downstream the biotower, whereas 23 OTUs of Sulfurospirillum, Desulfovibrio, and Bacillus, putatively performing dissimilatory nitrate reduction to ammonia (DNRA), were 3-fold more abundant in the same compartments (DNRA/denitrifiers winter ratio < 0.5 vs. monsoon ratio around 3). The total abundance of reported sulfate- and sulfite-reducing bacteria also increased 250- and 500-fold downstream the biotower, in the monsoon time-point. Bacteria performing DNRA may thus outcompete denitrification in this WWTP, limiting the biodegradation process. The alterations detected in bacterial populations involved in the removal of nitrogen and sulfur species evidenced a reduced quality of the released wastewater and may be good candidates for the following monitoring strategies and optimization of the wastewater treatment.
Asunto(s)
Bacterias/aislamiento & purificación , Microbiota , Aguas Residuales/microbiología , Amoníaco/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Desnitrificación , India , Nitratos/metabolismo , Nitritos/metabolismo , Petróleo/metabolismo , Filogenia , Estaciones del AñoRESUMEN
2.6% of the genome of the soil bacterium Pseudomonas putidaâ KT2440 encodes phage-related functions, but the burden of such opportunistic DNA on the host physiology is unknown. Each of the four apparently complete prophages borne by this strain was tested for stability, spontaneous excision and ability to cause lysis under various stressing conditions. While prophages P3 (PP2266-PP2297) and P4 (PP1532-1584) were discharged from the genome at a detectable rate, their induction failed otherwise to yield infective viruses. Isogenic P. putidaâ KT2440 derivatives bearing single and multiple deletions of each of the prophages were then subjected to thorough phenotypic analyses, which generally associated the loss of proviral DNA with an increase of physiological vigour. The most conspicuous benefit acquired by prophage-less cells was a remarkable improvement in tolerance to UV light and other insults to DNA. This was not accompanied, however, with an upgrade of recA-mediated homologous recombination. The range of tolerance to DNA damage gained by the prophage-free strain was equivalent to the UV resistance endowed by the TOL plasmid pWW0 to the wild-type bacterium. While the P. putida's prophages are therefore genuinely parasitic, their detrimental effects can be offset by acquisition of compensatory traits through horizontal gene transfer.
Asunto(s)
Provirus/genética , Pseudomonas putida/genética , Estrés Fisiológico/genética , Daño del ADN , Genoma Bacteriano , Plásmidos/genética , Profagos/genética , Pseudomonas putida/metabolismo , Pseudomonas putida/efectos de la radiación , Eliminación de Secuencia , Rayos UltravioletaRESUMEN
Bacteria form biofilm as a response to a number of environmental signals that are mediated by global transcription regulators and alarmones. Here we report the involvement of the global transcription regulator Fis in Pseudomonas putida biofilm formation through regulation of lapA and lapF genes. The major component of P. putida biofilm is proteinaceous and two large adhesive proteins, LapA and LapF, are known to play a key role in its formation. We have previously shown that Fis overexpression enhances P. putida biofilm formation. In this study, we used mini-Tn5 transposon mutagenesis to select potential Fis-regulated genes involved in biofilm formation. A total of 90â% of the studied transposon mutants carried insertions in the lap genes. Since our experiments showed that Fis-enhanced biofilm is mostly proteinaceous, the amounts of LapA and LapF from P. putida cells lysates were quantified using SDS-PAGE. Fis overexpression increases the quantity of LapA 1.6 times and decreases the amount of LapF at least 4 times compared to the wild-type cells. The increased LapA expression caused by Fis overexpression was confirmed by FACS analysis measuring the amount of LapA-GFP fusion protein. Our results suggest that the profusion of LapA in the Fis-overexpressed cells causes enhanced biofilm formation in mature stages of P. putida biofilm and LapF has a minor role in P. putida biofilm formation.
Asunto(s)
Proteínas Bacterianas/biosíntesis , Biopelículas/crecimiento & desarrollo , Factor Proteico para Inverción de Estimulación/metabolismo , Regulación Bacteriana de la Expresión Génica , Pseudomonas putida/fisiología , Proteínas Bacterianas/genética , Elementos Transponibles de ADN , Factor Proteico para Inverción de Estimulación/genética , Técnicas de Inactivación de Genes , Mutagénesis Insercional , Pseudomonas putida/genéticaRESUMEN
Contamination of the environment with crude oil or other fuels is an enormous disaster for all organisms. The microbial communities for bioremediation have been an effective tool for eliminating pollution. This study aimed to determine individual cultures' and a strain mixture's ability to utilize alkanes (single alkanes and crude oil). The proper study of pure cultures is necessary to design synergistically working consortia. The Acinetobacter venetianus ICP1 and Pseudomonas oleovorans ICTN13 strains isolated from a wastewater treatment plant of a crude oil refinery can grow in media containing various aromatic and aliphatic hydrocarbons. The genome of the strain ICP1 contains four genes encoding alkane hydroxylases, whose transcription depended on the length of the alkane in the media. We observed that the hydrophobic cells of the strain ICP1 adhered to hydrophobic substrates, and their biofilm formation increased the bioavailability and biodegradation of the hydrocarbons. Although strain ICTN13 also has one alkane hydroxylase-encoding gene, the growth of the strain in a minimal medium containing alkanes was weak. Importantly, the growth of the mixture of strains in the crude oil-containing medium was enhanced compared with that of the single strains, probably due to the specialization in the degradation of different hydrocarbon classes and co-production of biosurfactants.
RESUMEN
Evolution of catabolic pathways for the degradation of synthetic nitroaromatic compounds is currently ongoing process because these compounds have been in nature only for a short time. Bacteria isolated from contaminated areas contain pathways for the degradation of nitroaromatic compounds at different stages of progression. Therefore, the emergence of pathways for the degradation of such chemicals provides a good opportunity to investigate evolutionary processes leading to the emergence of new metabolic routes and their regulatory systems. In Burkholderia sp. strain DNT the regulatory gene encoding the LysR-type transcriptional regulator DntR is placed divergently of the dinitrotoluene (DNT) dioxygenase genes. This regulator still recognizes salicylate, an effector of its NagR-like ancestor but not DNT. In this issue of Molecular Microbiology, de las Heras et al. demonstrate that the DntR does not respond to any metabolic intermediates of the DNT catabolic pathway. The results of this study suggest that the catabolic pathway for the degradation of DNT has reached to an early stage of evolution when novel specificities of the catabolic enzymes have already acquired but the cognate regulatory system is still missing. This research addresses some fundamental questions about bottlenecks to be solved during evolution of new catabolic operons.
Asunto(s)
Evolución Biológica , Burkholderia/metabolismo , Dinitrobencenos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Burkholderia/genética , Dinitrobencenos/síntesis química , Regulación Bacteriana de la Expresión GénicaRESUMEN
An important link between the environment and the physiological state of bacteria is the regulation of the transcription of a large number of genes by global transcription factors. One of the global regulators, Fis (factor for inversion stimulation), is well studied in Escherichia coli, but the role of this protein in pseudomonads has only been examined briefly. According to studies in Enterobacteriaceae, Fis regulates positively the flagellar movement of bacteria. In pseudomonads, flagellar movement is an important trait for the colonization of plant roots. Therefore we were interested in the role of the Fis protein in Pseudomonas putida, especially the possible regulation of the colonization of plant roots. We observed that Fis reduced the migration of P. putida onto the apices of barley roots and thereby the competitiveness of bacteria on the roots. Moreover, we observed that overexpression of Fis drastically reduced swimming motility and facilitated P. putida biofilm formation, which could be the reason for the decreased migration of bacteria onto the root apices. It is possible that the elevated expression of Fis is important in the adaptation of P. putida during colonization of plant roots by promoting biofilm formation when the migration of bacteria is no longer favoured.
Asunto(s)
Biopelículas/crecimiento & desarrollo , Factor Proteico para Inverción de Estimulación/metabolismo , Regulación Bacteriana de la Expresión Génica , Hordeum/microbiología , Raíces de Plantas/microbiología , Pseudomonas putida/crecimiento & desarrollo , Enterobacteriaceae , Escherichia coli , Locomoción , VirulenciaRESUMEN
Homologous recombination (HR) has a major impact in bacterial evolution. Most of the knowledge about the mechanisms and control of HR in bacteria has been obtained in fast growing bacteria. However, in their natural environment bacteria frequently meet adverse conditions which restrict the growth of cells. We have constructed a test system to investigate HR between a plasmid and a chromosome in carbon-starved populations of the soil bacterium Pseudomonas putida restoring the expression of phenol monooxygenase gene pheA. Our results show that prolonged starvation of P. putida in the presence of phenol stimulates HR. The emergence of recombinants on selective plates containing phenol as an only carbon source for the growth of recombinants is facilitated by reactive oxygen species and suppressed by DNA mismatch repair enzymes. Importantly, the chromosomal location of the HR target influences the frequency and dynamics of HR events. In silico analysis of binding sites of nucleoid-associated proteins (NAPs) revealed that chromosomal DNA regions which flank the test system in bacteria exhibiting a lower HR frequency are enriched in binding sites for a subset of NAPs compared to those which express a higher frequency of HR. We hypothesize that the binding of these proteins imposes differences in local structural organization of the genome that could affect the accessibility of the chromosomal DNA to HR processes and thereby the frequency of HR.
Asunto(s)
Carbono/metabolismo , Cromosomas Bacterianos , Recombinación Homóloga , Pseudomonas putida/genética , Reparación de la Incompatibilidad de ADN , Enzimas Reparadoras del ADN/genética , Estrés Oxidativo , Fenol/metabolismo , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Extracellular factors and growth conditions can affect the formation and development of bacterial biofilms. The biofilm of Pseudomonas putida has been studied for decades, but so far, little attention has been paid to the components of the medium that may affect the biofilm development in a closed system. It is known that Fis strongly enhances biofilm in complete LB medium. However, this is not the case in the defined M9 medium, which led us to question why the bacterium behaves differently in these two media. Detailed analysis of the individual medium components revealed that tryptone as the LB proteinaceous component maintains biofilm in its older stages. Although the growth parameters of planktonic cells were similar in the media containing tryptone or an equivalent concentration of amino acids, only the tryptone had a positive effect on the mature biofilm of the wild type strain of P. putida. Thus, the peptides in the environment may influence mature biofilm as a structural factor and not only as an energy source. Testing the effect of other biopolymers on biofilm formation showed variable results even for polymers with a similar charge, indicating that biopolymers can affect P. putida biofilm through a number of bacterial factors.
RESUMEN
The majority of bacteria possess a different set of specialized DNA polymerases than those identified in the most common model organism Escherichia coli. Here, we have studied the ability of specialized DNA polymerases to substitute Pol I in DNA replication in Pseudomonas putida. Our results revealed that P. putida Pol I-deficient cells have severe growth defects in LB medium, which is accompanied by filamentous cell morphology. However, growth of Pol I-deficient bacteria on solid rich medium can be restored by reduction of reactive oxygen species in cells. Also, mutants with improved growth emerge rapidly. Similarly to the initial Pol I-deficient P. putida, its adapted derivatives express a moderate mutator phenotype, which indicates that DNA replication carried out in the absence of Pol I is erroneous both in the original Pol I-deficient bacteria and the adapted derivatives. Analysis of the spectra of spontaneous Rif(r) mutations in P. putida strains lacking different DNA polymerases revealed that the presence of specialized DNA polymerases Pol II and Pol IV influences the frequency of certain base substitutions in Pol I-proficient and Pol I-deficient backgrounds in opposite ways. Involvement of another specialized DNA polymerase DnaE2 in DNA replication in Pol I-deficient bacteria is stimulated by UV irradiation of bacteria, implying that DnaE2-provided translesion synthesis partially substitutes the absence of Pol I in cells containing heavily damaged DNA.
Asunto(s)
Proteínas Bacterianas/fisiología , ADN Polimerasa III/metabolismo , ADN Polimerasa II/metabolismo , ADN Polimerasa I/metabolismo , ADN Polimerasa beta/metabolismo , Mutación , Pseudomonas putida/metabolismo , Daño del ADN , ADN Polimerasa I/genética , Reparación del ADN , Replicación del ADN , Pseudomonas putida/genética , Pseudomonas putida/crecimiento & desarrollo , Pseudomonas putida/efectos de la radiación , Tolerancia a Radiación , Especies Reactivas de Oxígeno/farmacología , Rayos UltravioletaRESUMEN
Bioaugmentation in wastewater treatment plants (WWTPs) is challenging due to low survival and persistence of applied microbes. This study aimed to track the capacity and survival of fluorescent-tagged Pseudomonas oleovoransICTN13 as a model organism applicable in bioaugmentation of phenol-containing wastewater. The isolate was immobilized in alginate biopolymer, and enhanced efficacy and survival for biodegradation of phenol against free cells were studied. Encapsulated cells resulted in enhanced phenol removal efficiency (~94%) compared to free cells (~72%). Encapsulation of cells facilitated an extended storage time of 30 days. Remarkably, phenol and COD removal efficacy of encapsulated cells was sustained up to ~ 92-93% in a reactor after 45 days, while free cells could produce ~ 80-84% removal efficiency. Fluorescence microscopy showed high survival of the encapsulated cells, whereas gradual deterioration of free cells was observed. Thus, the findings highlight the importance of bio augmented strain in WWTPs where encapsulation is a crucial factor.
Asunto(s)
Fenol , Pseudomonas oleovorans , Biodegradación Ambiental , Células Inmovilizadas , Fenoles , Aguas ResidualesRESUMEN
Although many nitroaromatic compounds have been in nature for only a few decades, bacteria have already evolved the ability to metabolize them. Both horizontal transfer of genes and mutagenesis induced under stressful conditions might facilitate evolution of new catabolic pathways. Nitrotoluene degradation pathways are supposedly derived from an ancestral naphthalene degradation pathway. The 2-nitrotoluene degradation genes in Acidovorax sp. strain JS42 are controlled by the transcriptional activator NtdR, which differs from NagR, the activator of the naphthalene degradation operon in Ralstonia sp. strain U2, by only five amino acids. Both regulators respond to salicylate, an intermediate of naphthalene degradation, but NtdR also recognizes a wide range of nitroaromatic compounds. In this issue of Molecular Microbiology, Ju et al. present results of site-directed mutagenesis of NtdR and NagR and show how the nitrotoluene-responsive regulator NtdR can be generated from a NagR-like ancestor by only a few mutations. The reconstructed hypothetical pathway for the evolution of NtdR from NagR demonstrates stepwise broadening of the effector range of the evolving protein without loss of the original activity. These results provide strong evidence for the idea that promiscuity of proteins is an important step in the evolution of new functions.
Asunto(s)
Comamonadaceae/genética , Comamonadaceae/metabolismo , Redes y Vías Metabólicas/genética , Naftalenos/metabolismo , Ralstonia/genética , Ralstonia/metabolismo , Tolueno/análogos & derivados , Proteínas Bacterianas/genética , Biotransformación , Evolución Molecular , Mutagénesis Sitio-Dirigida , Salicilatos/metabolismo , Tolueno/metabolismoRESUMEN
BACKGROUND: We have recently found that Pseudomonas putida deficient in ColRS two-component system is sensitive to phenol and displays a serious defect on solid glucose medium where subpopulation of bacteria lyses. The latter phenotype is significantly enhanced by the presence of phenol in growth medium. Here, we focused on identification of factors affecting phenol tolerance of the colR-deficient P. putida. RESULTS: By using transposon mutagenesis approach we identified a set of phenol-tolerant derivatives of colR-deficient strain. Surprisingly, half of independent phenol tolerant clones possessed miniTn5 insertion in the ttgABC operon. However, though inactivation of TtgABC efflux pump significantly enhanced phenol tolerance, it did not affect phenol-enhanced autolysis of the colR mutant on glucose medium indicating that phenol- and glucose-caused stresses experienced by the colR-deficient P. putida are not coupled. Inactivation of TtgABC pump significantly increased the phenol tolerance of the wild-type P. putida as well. Comparison of phenol tolerance of growing versus starving bacteria revealed that both ColRS and TtgABC systems affect phenol tolerance only under growth conditions and not under starvation. Flow cytometry analysis showed that phenol strongly inhibited cell division and to some extent also caused cell membrane permeabilization to propidium iodide. Single cell analysis of populations of the ttgC- and colRttgC-deficient strains revealed that their membrane permeabilization by phenol resembles that of the wild-type and the colR mutant, respectively. However, cell division of P. putida with inactivated TtgABC pump seemed to be less sensitive to phenol than that of the parental strain. At the same time, cell division appeared to be more inhibited in the colR-mutant strain than in the wild-type P. putida. CONCLUSIONS: ColRS signal system and TtgABC efflux pump are involved in the phenol tolerance of P. putida. However, as they affect phenol tolerance of growing bacteria only, this indicates that they participate in the regulation of processes which are active during the growth and/or cell division. Single cell analysis data indicated that the cell division step of cell cycle is particularly sensitive to the toxic effect of phenol and its inhibition can be considered as an adaptive response under conditions of phenol stress.
Asunto(s)
Antibacterianos/toxicidad , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana , Proteínas de Transporte de Membrana/metabolismo , Fenol/toxicidad , Pseudomonas putida/efectos de los fármacos , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Membrana Celular/metabolismo , Medios de Cultivo/química , Elementos Transponibles de ADN , Eliminación de Gen , Glucosa/metabolismo , Proteínas de Transporte de Membrana/genética , Mutagénesis Insercional , Permeabilidad , Fenol/metabolismo , Propidio/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/crecimiento & desarrolloRESUMEN
The rpoB gene encoding for beta subunit of RNA polymerase is a target of mutations leading to rifampicin resistant (Rif(r)) phenotype of bacteria. Here we have characterized rpoB/Rif(r) system in Pseudomonas aeruginosa and Pseudomonas putida as a test system for studying mutational processes. We found that in addition to the appearance of large colonies which were clearly visible on Rif selective plates already after 24h of plating, small colonies grew up on these plates for 48 h. The time-dependent appearance of the mutant colonies onto selective plates was caused by different levels of Rif resistance of the mutants. The Rif(r) clusters of the rpoB gene were sequenced and analyzed for 360 mutants of P. aeruginosa and for 167 mutants of P. putida. The spectrum of Rif(r) mutations characterized for P. aeruginosa grown at 37 degrees C and that characterized for P. putida grown at 30 degrees C were dissimilar but the differences almost disappeared when the mutants of both strain were isolated at the same temperature, at 30 degrees C. The strong Rif(r) phenotype of P. aeruginosa and P. putida was accompanied only with substitutions of these residues which belong to the putative Rif-binding pocket. Approximately 70% of P. aeruginosa mutants, which were isolated at 37 degrees C and expressed weak Rif(r) phenotype, contained base substitutions in the N-terminal cluster of the rpoB gene. The differences in the spectra of mutations at 30 degrees C and 37 degrees C can be explained by temperature-sensitive growth of several mutants in the presence of rifampicin. Thus, our results imply that both the temperature for the growth of bacteria and the time for isolation of Rif(r) mutants from selective plates are critical when the rpoB/Rif(r) test system is employed for comparative studies of mutagenic processes in Pseudomonas species which are conventionally cultivated at different temperatures.
Asunto(s)
Proteínas Bacterianas/genética , ARN Polimerasas Dirigidas por ADN/genética , Mutación/genética , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Pseudomonas aeruginosa/genética , Pseudomonas putida/genética , Rifampin/farmacología , Secuencia de Aminoácidos , Secuencia de Bases , Datos de Secuencia Molecular , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas putida/crecimiento & desarrollo , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido NucleicoRESUMEN
Pseudomonas putida is a fast-growing bacterium found mostly in temperate soil and water habitats. The metabolic versatility of P. putida makes this organism attractive for biotechnological applications such as biodegradation of environmental pollutants and synthesis of added-value chemicals (biocatalysis). This organism has been extensively studied in respect to various stress responses, mechanisms of genetic plasticity and transcriptional regulation of catabolic genes. P. putida is able to colonize the surface of living organisms, but is generally considered to be of low virulence. A number of P. putida strains are able to promote plant growth. The aim of this review is to give historical overview of the discovery of the species P. putida and isolation and characterization of P. putida strains displaying potential for biotechnological applications. This review also discusses some major findings in P. putida research encompassing regulation of catabolic operons, stress-tolerance mechanisms and mechanisms affecting evolvability of bacteria under conditions of environmental stress.
Asunto(s)
Biotecnología , Metabolismo/genética , Operón/genética , Infecciones por Pseudomonas/microbiología , Pseudomonas putida/fisiología , Biodegradación Ambiental , Evolución Biológica , Interacciones Huésped-Patógeno , Humanos , Pseudomonas putida/genética , Estrés FisiológicoRESUMEN
Nucleoid-associated proteins (NAPs) such as IHF, HU, Fis, and H-NS alter the topology of bound DNA and may thereby affect accessibility of DNA to repair and recombination processes. To examine this possibility, we investigated the effect of IHF on the frequency of homologous recombination (HR) and point mutations in soil bacterium Pseudomonas putida by using plasmidial and chromosomal assays. We observed positive effect of IHF on the frequency of HR, whereas this effect varied depending both on the chromosomal location of the HR target and the type of plasmid used in the assay. The occurrence of point mutations in plasmid was also facilitated by IHF, whereas in the chromosome the positive effect of IHF appeared only at certain DNA sequences and/or chromosomal positions. We did not observe any significant effects of IHF on the spectrum of mutations. However, despite of the presence or absence of IHF, different mutational hot spots appeared both in plasmid and in chromosome. Additionally, the frequency of frameshift mutations in the chromosome was also strongly affected by the location of the mutational target sequence. Taking together, our results indicate that IHF facilitates the occurrence of genetic changes in P. putida, whereas the location of the target sequence affects both the IHF-dependent and IHF-independent mechanisms.
Asunto(s)
Recombinación Homóloga , Factores de Integración del Huésped/metabolismo , Pseudomonas putida/genética , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/genética , Mutación del Sistema de Lectura , Plásmidos/genética , Mutación Puntual , Pseudomonas putida/metabolismoRESUMEN
Pseudouridines are known to be important for optimal translation. In this study we demonstrate an unexpected link between pseudouridylation of tRNA and mutation frequency in Pseudomonas species. We observed that the lack of pseudouridylation activity of pseudouridine synthases TruA or RluA elevates the mutation frequency in Pseudomonas putida 3 to 5-fold. The absence of TruA but not RluA elevates mutation frequency also in Pseudomonas aeruginosa. Based on the results of genetic studies and analysis of proteome data, the mutagenic effect of the pseudouridylation deficiency cannot be ascribed to the involvement of error-prone DNA polymerases or malfunctioning of DNA repair pathways. In addition, although the deficiency in TruA-dependent pseudouridylation made P. putida cells more sensitive to antimicrobial compounds that may cause oxidative stress and DNA damage, cultivation of bacteria in the presence of reactive oxygen species (ROS)-scavenging compounds did not eliminate the mutator phenotype. Thus, the elevated mutation frequency in the absence of tRNA pseudouridylation could be the result of a more specific response or, alternatively, of a cumulative effect of several small effects disturbing distinct cellular functions, which remain undetected when studied independently. This work suggests that pseudouridines link the translation machinery to mutation frequency.
RESUMEN
The drilling, processing and transportation of oil are the main sources of pollution in water and soil. The current work analyzes the microbial diversity and aromatic compounds degradation potential in the metagenomes of communities in the wastewater treatment plant (WWTP) of a crude oil refinery. By focusing on the degradation of phenol, we observed the involvement of diverse indigenous microbial communities at different steps of the WWTP. The anaerobic bacterial and archaeal genera were replaced by aerobic and facultative anaerobic bacteria through the biological treatment processes. The phyla Proteobacteria, Bacteroidetes and Planctomycetes were dominating at different stages of the treatment. Most of the established protein sequences of the phenol degradation key enzymes belonged to bacteria from the class Alphaproteobacteria. From 35 isolated strains, 14 were able to grow on aromatic compounds, whereas several phenolic compound-degrading strains also degraded aliphatic hydrocarbons. Two strains, Acinetobacter venetianus ICP1 and Pseudomonas oleovorans ICTN13, were able to degrade various aromatic and aliphatic pollutants and were further characterized by whole genome sequencing and cultivation experiments in the presence of phenol to ascertain their metabolic capacity in phenol degradation. When grown alone, the intermediates of catechol degradation, the meta or ortho pathways, accumulated into the growth environment of these strains. In the mixed cultures of the strains ICP1 and ICTN13, phenol was degraded via cooperation, in which the strain ICP1 was responsible for the adherence of cells and ICTN13 diminished the accumulation of toxic intermediates.
RESUMEN
RpoS is a bacterial sigma factor of RNA polymerase which is involved in the expression of a large number of genes to facilitate survival under starvation conditions and other stresses. The results of our study demonstrate that the frequency of emergence of base substitution mutants is significantly increased in long-term-starved populations of rpoS-deficient Pseudomonas putida cells. The increasing effect of the lack of RpoS on the mutation frequency became apparent in both a plasmid-based test system measuring Phe(+) reversion and a chromosomal rpoB system detecting rifampin-resistant mutants. The elevated mutation frequency coincided with the death of about 95% of the cells in a population of rpoS-deficient P. putida. Artificial overexpression of superoxide dismutase or catalase in the rpoS-deficient strain restored the survival of cells and resulted in a decline in the mutation frequency. This indicated that, compared to wild-type bacteria, rpoS-deficient cells are less protected against damage caused by reactive oxygen species. 7,8-Dihydro-8-oxoguanine (GO) is known to be one of the most stable and frequent base modifications caused by oxygen radical attack on DNA. However, the spectrum of base substitution mutations characterized in rpoS-deficient P. putida was different from that in bacteria lacking the GO repair system: it was broader and more similar to that identified in the wild-type strain. Interestingly, the formation of large deletions was also accompanied by a lack of RpoS. Thus, the accumulation of DNA damage other than GO elevates the frequency of mutation in these bacteria. It is known that oxidative damage of proteins and membrane components, but not that of DNA, is a major reason for the death of cells. Since the increased mutation frequency was associated with a decline in the viability of bacteria, we suppose that the elevation of the mutation frequency in the surviving population of carbon-starved rpoS-deficient P. putida may be caused both by oxidative damage of DNA and enzymes involved in DNA replication and repair fidelity.