Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 23(12): e55839, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36268590

RESUMEN

ZBP1 is an interferon-induced cytosolic nucleic acid sensor that facilitates antiviral responses via RIPK3. Although ZBP1-mediated programmed cell death is widely described, whether and how it promotes inflammatory signaling is unclear. Here, we report a ZBP1-induced inflammatory signaling pathway mediated by K63- and M1-linked ubiquitin chains, which depends on RIPK1 and RIPK3 as scaffolds independently of cell death. In human HT29 cells, ZBP1 associated with RIPK1 and RIPK3 as well as ubiquitin ligases cIAP1 and LUBAC. ZBP1-induced K63- and M1-linked ubiquitination of RIPK1 and ZBP1 to promote TAK1- and IKK-mediated inflammatory signaling and cytokine production. Inhibition of caspase activity suppressed ZBP1-induced cell death but enhanced cytokine production in a RIPK1- and RIPK3 kinase activity-dependent manner. Lastly, we provide evidence that ZBP1 signaling contributes to SARS-CoV-2-induced cytokine production. Taken together, we describe a ZBP1-RIPK3-RIPK1-mediated inflammatory signaling pathway relayed by the scaffolding role of RIPKs and regulated by caspases, which may induce inflammation when ZBP1 is activated below the threshold needed to trigger a cell death response.


Asunto(s)
Muerte Celular , Proteínas de Unión al ARN , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Humanos , Citocinas , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Transducción de Señal , Ubiquitina , Proteínas de Unión al ARN/genética , Células HT29 , Inflamación
2.
Cereb Cortex ; 27(12): 5477-5484, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27733541

RESUMEN

The early postnatal development of neuron and glia numbers is poorly documented in human brain. Therefore we estimated using design-based stereological methods the regional volumes of neocortex and the numbers of neocortical neurons and glial cells for 10 children (4 girls and 6 boys), ranging from neonate to 3 years of age. The 10 infants had a mean of 20.7 × 109 neocortical neurons (range 18.0-24.8 × 109) estimated with a coefficient of variation (CV) = 0.11; this range is similar to adult neuron numbers. The glia populations were 10.5 × 109 oligodendrocytes (range 5.0-16.0 × 109; CV = 0.40); 5.3 × 109 astrocytes (range 2.7-8.3 × 109, CV = 0.39); and 0.32 × 109 microglia (range 0.15-0.43 × 109, CV = 0.31). Thus, the estimated mean composite number of neocortical neuron and glial cells was 36.8 × 109 (range 26.8-48.3 × 109, CV = 0.21), of which approximately one-half were glial cells. There was a significant linear increase in oligodendrocyte and astrocyte numbers during the first 3 years of life, but no change in the total number of neurons. This is in line with our expectation that the total number of neocortical neurons is already determined in mid-fetal life.


Asunto(s)
Neocórtex/citología , Neocórtex/crecimiento & desarrollo , Recuento de Células , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Modelos Lineales , Masculino , Neuroglía/citología , Neuronas/citología
3.
Cereb Cortex ; 26(1): 89-95, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25122465

RESUMEN

While brain gray matter is primarily associated with sensorimotor processing and cognition, white matter modulates the distribution of action potentials, coordinates communication between different brain regions, and acts as a relay for input/output signals. Previous studies have described morphological changes in gray and white matter during childhood and adolescence, which are consistent with cellular genesis and maturation, but corresponding events in infants are poorly documented. In the present study, we estimated the total number of cells (neurons, oligodendrocytes, astrocytes, and microglia) in the cerebral white matter of 9 infants aged 0-33 months, using design-based stereological methods to obtain quantitative data about brain development. There were linear increases with age in the numbers of oligodendrocytes (7-28 billion) and astrocytes (1.5-6.7 billion) during the first 3 years of life, thus attaining two-thirds of the corresponding numbers in adults. The numbers of neurons (0.7 billion) and microglia (0.2 billion) in the white matter did not increase during the first 3 years of life, but showed large biological variation.


Asunto(s)
Astrocitos/citología , Microglía/citología , Oligodendroglía/citología , Sustancia Blanca/citología , Sustancia Blanca/crecimiento & desarrollo , Factores de Edad , Proliferación Celular/fisiología , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA