Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
3.
Am J Physiol Heart Circ Physiol ; 309(3): H434-49, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26055793

RESUMEN

Cardiac mitochondrial dysfunction has been implicated in heart failure of diverse etiologies. Generalized mitochondrial disease also leads to cardiomyopathy with various clinical manifestations. Impaired mitochondrial homeostasis may over time, such as in the aging heart, lead to cardiac dysfunction. Mitochondrial DNA (mtDNA), close to the electron transport chain and unprotected by histones, may be a primary pathogenetic site, but this is not known. Here, we test the hypothesis that cumulative damage of cardiomyocyte mtDNA leads to cardiomyopathy and heart failure. Transgenic mice with Tet-on inducible, cardiomyocyte-specific expression of a mutant uracil-DNA glycosylase 1 (mutUNG1) were generated. The mutUNG1 is known to remove thymine in addition to uracil from the mitochondrial genome, generating apyrimidinic sites, which obstruct mtDNA function. Following induction of mutUNG1 in cardiac myocytes by administering doxycycline, the mice developed hypertrophic cardiomyopathy, leading to congestive heart failure and premature death after ∼2 mo. The heart showed reduced mtDNA replication, severely diminished mtDNA transcription, and suppressed mitochondrial respiration with increased Pgc-1α, mitochondrial mass, and antioxidative defense enzymes, and finally failing mitochondrial fission/fusion dynamics and deteriorating myocardial contractility as the mechanism of heart failure. The approach provides a model with induced cardiac-restricted mtDNA damage for investigation of mtDNA-based heart disease.


Asunto(s)
Daño del ADN , ADN Mitocondrial/metabolismo , Insuficiencia Cardíaca/metabolismo , Mitocondrias Cardíacas/metabolismo , Dinámicas Mitocondriales , Animales , Insuficiencia Cardíaca/genética , Ratones , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Uracil-ADN Glicosidasa/genética , Uracil-ADN Glicosidasa/metabolismo
4.
Nucleic Acids Res ; 40(18): 9044-59, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22810208

RESUMEN

The structure specific flap endonuclease 1 (FEN1) plays an essential role in long-patch base excision repair (BER) and in DNA replication. We have generated a fluorescently tagged FEN1 expressing mouse which allows monitoring the localization and kinetics of FEN1 in response to DNA damage in living cells and tissues. The expression of FEN1, which is tagged at its C-terminal end with enhanced yellow fluorescent protein (FEN1-YFP), is under control of the endogenous Fen1 transcriptional regulatory elements. In line with its role in processing of Okazaki fragments during DNA replication, we found that FEN1-YFP expression is mainly observed in highly proliferating tissue. Moreover, the FEN1-YFP fusion protein allowed us to investigate repair kinetics in cells challenged with local and global DNA damage. In vivo multi-photon fluorescence microscopy demonstrates rapid localization of FEN1 to local laser-induced DNA damage sites in nuclei, providing evidence of a highly mobile protein that accumulates fast at DNA lesion sites with high turnover rate. Inhibition of poly (ADP-ribose) polymerase 1 (PARP1) disrupts FEN1 accumulation at sites of DNA damage, indicating that PARP1 is required for FEN1 recruitment to DNA repair intermediates in BER.


Asunto(s)
Reparación del ADN , Endonucleasas de ADN Solapado/metabolismo , Animales , Proteínas Bacterianas/genética , Encéfalo/metabolismo , Células Cultivadas , Daño del ADN , Endonucleasas de ADN Solapado/análisis , Endonucleasas de ADN Solapado/genética , Técnicas de Sustitución del Gen , Cinética , Proteínas Luminiscentes/genética , Ratones , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Antígeno Nuclear de Célula en Proliferación/análisis , Fase S
5.
Mutat Res ; 614(1-2): 56-68, 2007 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-16765995

RESUMEN

Genetically modified mouse models are a powerful approach to study the relation of a single gene-deletion to processes such as mutagenesis and carcinogenesis. The generation of base excision repair (BER) deficient mouse models has resulted in a re-examination of the cellular defence mechanisms that exist to counteract DNA base damage. This review discusses novel insights into the relation between specific gene-deletions and the organ and cell specificity of visible and molecular phenotypes, including accumulation of base lesions in genomic DNA and carcinogenesis. Although promising models exist, there is still a need for new models. These models should comprise combined deficiencies of DNA glycosylases which initiate the BER pathway, to elaborate on the repair redundancy, as well as conditional models of the intermediate steps of BER.


Asunto(s)
Reparación del ADN/genética , Mutación , Animales , Daño del ADN , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Ratones , Ratones Noqueados , Modelos Genéticos , Especificidad de Órganos
6.
Nat Commun ; 8: 15557, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28534495

RESUMEN

Physical exercise can improve brain function and delay neurodegeneration; however, the initial signal from muscle to brain is unknown. Here we show that the lactate receptor (HCAR1) is highly enriched in pial fibroblast-like cells that line the vessels supplying blood to the brain, and in pericyte-like cells along intracerebral microvessels. Activation of HCAR1 enhances cerebral vascular endothelial growth factor A (VEGFA) and cerebral angiogenesis. High-intensity interval exercise (5 days weekly for 7 weeks), as well as L-lactate subcutaneous injection that leads to an increase in blood lactate levels similar to exercise, increases brain VEGFA protein and capillary density in wild-type mice, but not in knockout mice lacking HCAR1. In contrast, skeletal muscle shows no vascular HCAR1 expression and no HCAR1-dependent change in vascularization induced by exercise or lactate. Thus, we demonstrate that a substance released by exercising skeletal muscle induces supportive effects in brain through an identified receptor.


Asunto(s)
Encéfalo/irrigación sanguínea , Neovascularización Fisiológica/fisiología , Condicionamiento Físico Animal/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Capilares/citología , Capilares/efectos de los fármacos , Capilares/metabolismo , Inyecciones Subcutáneas , Ácido Láctico/administración & dosificación , Ácido Láctico/sangre , Ácido Láctico/metabolismo , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Pericitos/metabolismo , Receptores Acoplados a Proteínas G/genética
7.
Neurobiol Aging ; 48: 34-47, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27639119

RESUMEN

Mitochondrial genome maintenance plays a central role in preserving brain health. We previously demonstrated accumulation of mitochondrial DNA damage and severe neurodegeneration in transgenic mice inducibly expressing a mutated mitochondrial DNA repair enzyme (mutUNG1) selectively in forebrain neurons. Here, we examine whether severe neurodegeneration in mutUNG1-expressing mice could be rescued by feeding the mice a ketogenic diet, which is known to have beneficial effects in several neurological disorders. The diet increased the levels of superoxide dismutase 2, and mitochondrial mass, enzymes, and regulators such as SIRT1 and FIS1, and appeared to downregulate N-methyl-D-aspartic acid (NMDA) receptor subunits NR2A/B and upregulate γ-aminobutyric acid A (GABAA) receptor subunits α1. However, unexpectedly, the ketogenic diet aggravated neurodegeneration and mitochondrial deterioration. Electron microscopy showed structurally impaired mitochondria accumulating in neuronal perikarya. We propose that aggravation is caused by increased mitochondrial biogenesis of generally dysfunctional mitochondria. This study thereby questions the dogma that a ketogenic diet is unambiguously beneficial in mitochondrial disorders.


Asunto(s)
Daño del ADN , ADN Mitocondrial , Dieta Cetogénica/efectos adversos , Mitocondrias/genética , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/genética , Prosencéfalo , Animales , ADN Mitocondrial/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica , Mitocondrias/patología , Enfermedades Mitocondriales/etiología , Enfermedades Mitocondriales/genética , Neuronas/ultraestructura , Biogénesis de Organelos , Perileno , Prosencéfalo/citología , Prosencéfalo/metabolismo
8.
Cancer Res ; 68(12): 4571-9, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18559501

RESUMEN

Flap endonuclease 1 (FEN1) processes Okazaki fragments in lagging strand DNA synthesis, and FEN1 is involved in several DNA repair pathways. The interaction of FEN1 with the proliferating cell nuclear antigen (PCNA) processivity factor is central to the function of FEN1 in both DNA replication and repair. Here we present two gene-targeted mice with mutations in FEN1. The first mutant mouse carries a single amino acid point mutation in the active site of the nuclease domain of FEN1 (Fen1(E160D/E160D)), and the second mutant mouse contains two amino acid substitutions in the highly conserved PCNA interaction domain of FEN1 (Fen1(DeltaPCNA/DeltaPCNA)). Fen1(E160D/E160D) mice develop a considerably elevated incidence of B-cell lymphomas beginning at 6 months of age, particularly in females. By 16 months of age, more than 90% of the Fen1(E160D/E160D) females have tumors, primarily lymphomas. By contrast, Fen1(DeltaPCNA/DeltaPCNA) mouse embryos show extensive apoptosis in the forebrain and vertebrae area and die around stage E9.5 to E11.5.


Asunto(s)
Apoptosis , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Endonucleasas de ADN Solapado/fisiología , Linfoma/etiología , Linfoma/patología , Antígeno Nuclear de Célula en Proliferación/fisiología , Animales , Animales Recién Nacidos , Ciclo Celular/fisiología , Proliferación Celular , Células Cultivadas , Medio de Cultivo Libre de Suero , Reparación del ADN , Replicación del ADN , Embrión de Mamíferos/citología , Femenino , Genes de Inmunoglobulinas/genética , Genes Letales , Resistencia a la Insulina , Masculino , Ratones , Ratones Mutantes , Mutación/genética , Hibridación de Ácido Nucleico , Obesidad/etiología , Estructura Terciaria de Proteína , Recombinación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA