RESUMEN
The complex refractive index components, n and k, have been studied for thin films of several common dielectric materials with a low to medium refractive index as functions of wavelength and stoichiometry for mid-infrared (MIR) wavelengths within the range 1.54-14.29 µm (700-6500 cm(-1)). The materials silicon oxide, silicon nitride, aluminum oxide, aluminum nitride, and titanium oxide are prepared using room temperature reactive sputter deposition and are characterized using MIR variable angle spectroscopic ellipsometry. The investigation shows how sensitive the refractive index functions are to the O2 and N2 flow rates, and for which growth conditions the materials deposit homogeneously. It also allows conclusions to be drawn on the degree of amorphousness and roughness. To facilitate comparison of the materials deposited in this work with others, the index of refraction was also determined and provided for the near-IR and visible ranges of the spectrum. The results presented here should serve as a useful information base for designing optical coatings for the MIR part of the electromagnetic spectrum. The results are parameterized to allow them to be easily used for coating design.
RESUMEN
A monolithic coupling scheme for mid-infrared quantum cascade laser arrays is investigated with respect to brightness enhancement. The tree-shaped resonator enables parallel coupling of six laser elements into a single element by means of several Y-junctions. Phase-locking is observed on the basis of far field analysis, and leads to in-phase emission on both sides of the device. The experimental results match calculated far field profiles and demonstrate a high level of modal control when driven far above threshold. Whereas optical power measurements confirm negligible coupling losses, the slope efficiency is below the theoretically expected value, which is attributed to modal competition. Additional evaluation of near fields and spectral characteristics provides background on the modal dynamics of the sophisticated cavity and reveals limitations to coherent beam combining. The findings pave the way to improved coupling efficiency and brightness scaling of a single facet emitting compact quantum cascade laser array.