Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(29): e2301250120, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37428903

RESUMEN

Duchenne muscular dystrophy (DMD) is a fatal X-linked disease caused by mutations in the DMD gene, leading to complete absence of dystrophin and progressive degeneration of skeletal musculature and myocardium. In DMD patients and in a corresponding pig model with a deletion of DMD exon 52 (DMDΔ52), expression of an internally shortened dystrophin can be achieved by skipping of DMD exon 51 to reframe the transcript. To predict the best possible outcome of this strategy, we generated DMDΔ51-52 pigs, additionally representing a model for Becker muscular dystrophy (BMD). DMDΔ51-52 skeletal muscle and myocardium samples stained positive for dystrophin and did not show the characteristic dystrophic alterations observed in DMDΔ52 pigs. Western blot analysis confirmed the presence of dystrophin in the skeletal muscle and myocardium of DMDΔ51-52 pigs and its absence in DMDΔ52 pigs. The proteome profile of skeletal muscle, which showed a large number of abundance alterations in DMDΔ52 vs. wild-type (WT) samples, was normalized in DMDΔ51-52 samples. Cardiac function at age 3.5 mo was significantly reduced in DMDΔ52 pigs (mean left ventricular ejection fraction 58.8% vs. 70.3% in WT) but completely rescued in DMDΔ51-52 pigs (72.3%), in line with normalization of the myocardial proteome profile. Our findings indicate that ubiquitous deletion of DMD exon 51 in DMDΔ52 pigs largely rescues the rapidly progressing, severe muscular dystrophy and the reduced cardiac function of this model. Long-term follow-up studies of DMDΔ51-52 pigs will show if they develop symptoms of the milder BMD.


Asunto(s)
Distrofia Muscular de Duchenne , Animales , Porcinos , Distrofia Muscular de Duchenne/metabolismo , Distrofina/genética , Distrofina/metabolismo , Proteoma/metabolismo , Volumen Sistólico , Función Ventricular Izquierda , Músculo Esquelético/metabolismo , Exones/genética
3.
Xenotransplantation ; 31(1): e12841, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38864375

RESUMEN

INTRODUCTION: Orthotopic cardiac xenotransplantation has seen notable improvement, leading to the first compassionate use in 2022. However, it remains challenging to define the clinical application of cardiac xenotransplantation, including the back-up strategy in case of xenograft failure. In this regard, the heterotopic thoracic technique could be an alternative to the orthotopic procedure. We present hemodynamic data of heterotopic thoracic pig-to-baboon transplantation experiments, focusing on perioperative xenograft dysfunction and xenograft overgrowth. METHODS: We used 17 genetically modified piglets as donors for heterotopic thoracic xenogeneic cardiac transplantation into captive-bred baboons. In all animals, pressure probes were implanted in the graft's left ventricle and the recipient's ascending aorta and hemodynamic data (graft pressure, aortic pressure and recipient's heart rate) were recorded continuously. RESULTS: Aortic pressures and heart rates of the recipients' hearts were postoperatively stable in all experiments. After reperfusion, three grafts presented with low left ventricular pressure indicating perioperative cardiac dysfunction (PCXD). These animals recovered from PCXD within 48 h under support of the recipient's heart and there was no difference in survival compared to the other 14 ones. After 48 h, graft pressure increased up to 200 mmHg in all 17 animals with two different time-patterns. This led to a progressive gradient between graft and aortic pressure. With increasing gradient, the grafts stopped contributing to cardiac output. Grafts showed a marked weight increase from implantation to explantation. CONCLUSION: The heterotopic thoracic cardiac xenotransplantation technique is a possible method to overcome PCXD in early clinical trials and an experimental tool to get a better understanding of PCXD. The peculiar hemodynamic situation of increasing graft pressure but missing graft's output indicates outflow tract obstruction due to cardiac overgrowth. The heterotopic thoracic technique should be successful when using current strategies of immunosuppression, organ preservation and donor pigs with smaller body and organ size.


Asunto(s)
Trasplante de Corazón , Hemodinámica , Xenoinjertos , Papio , Trasplante Heterólogo , Animales , Trasplante Heterólogo/métodos , Trasplante de Corazón/métodos , Porcinos , Hemodinámica/fisiología , Supervivencia de Injerto , Trasplante Heterotópico/métodos , Animales Modificados Genéticamente , Rechazo de Injerto , Humanos
4.
Nature ; 564(7736): 430-433, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30518863

RESUMEN

Heart transplantation is the only cure for patients with terminal cardiac failure, but the supply of allogeneic donor organs falls far short of the clinical need1-3. Xenotransplantation of genetically modified pig hearts has been discussed as a potential alternative4. Genetically multi-modified pig hearts that lack galactose-α1,3-galactose epitopes (α1,3-galactosyltransferase knockout) and express a human membrane cofactor protein (CD46) and human thrombomodulin have survived for up to 945 days after heterotopic abdominal transplantation in baboons5. This model demonstrated long-term acceptance of discordant xenografts with safe immunosuppression but did not predict their life-supporting function. Despite 25 years of extensive research, the maximum survival of a baboon after heart replacement with a porcine xenograft was only 57 days and this was achieved, to our knowledge, only once6. Here we show that α1,3-galactosyltransferase-knockout pig hearts that express human CD46 and thrombomodulin require non-ischaemic preservation with continuous perfusion and control of post-transplantation growth to ensure long-term orthotopic function of the xenograft in baboons, the most stringent preclinical xenotransplantation model. Consistent life-supporting function of xenografted hearts for up to 195 days is a milestone on the way to clinical cardiac xenotransplantation7.


Asunto(s)
Trasplante de Corazón , Xenoinjertos/trasplante , Papio , Porcinos , Trasplante Heterólogo , Animales , Anticuerpos/análisis , Anticuerpos/sangre , Proteínas del Sistema Complemento/análisis , Enzimas/sangre , Fibrina/análisis , Galactosiltransferasas/deficiencia , Galactosiltransferasas/genética , Xenoinjertos/patología , Humanos , Hígado/enzimología , Masculino , Proteína Cofactora de Membrana/genética , Proteína Cofactora de Membrana/metabolismo , Miocardio/enzimología , Necrosis , Perfusión , Recuento de Plaquetas , Tiempo de Protrombina , Trombomodulina/genética , Trombomodulina/metabolismo , Factores de Tiempo
5.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34508004

RESUMEN

ß cells produce, store, and secrete insulin upon elevated blood glucose levels. Insulin secretion is a highly regulated process. The probability for insulin secretory granules to undergo fusion with the plasma membrane or being degraded is correlated with their age. However, the molecular features and stimuli connected to this behavior have not yet been fully understood. Furthermore, our understanding of ß cell function is mostly derived from studies of ex vivo isolated islets in rodent models. To overcome this translational gap and study insulin secretory granule turnover in vivo, we have generated a transgenic pig model with the SNAP-tag fused to insulin. We demonstrate the correct targeting and processing of the tagged insulin and normal glycemic control of the pig model. Furthermore, we show specific single- and dual-color granular labeling of in vivo-labeled pig pancreas. This model may provide unprecedented insights into the in vivo insulin secretory granule behavior in an animal close to humans.


Asunto(s)
Animales Modificados Genéticamente/metabolismo , Membrana Celular/metabolismo , Colorantes Fluorescentes/química , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas SNARE/metabolismo , Vesículas Secretoras/metabolismo , Animales , Exocitosis , Glucosa/metabolismo , Secreción de Insulina , Masculino , Porcinos
6.
Respir Res ; 24(1): 83, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927357

RESUMEN

BACKGROUND: The respiratory tract is protected from inhaled particles and microbes by mucociliary clearance, mediated by the mucus and the cilia creating a flow to move the mucus cephalad. Submucosal glands secrete linear MUC5B mucin polymers and because they pass through the gland duct before reaching the airway surface, bundled strands of 1000-5000 parallel molecules exit the glands. In contrast, the surface goblet cells secrete both MUC5AC and MUC5B. METHODS: We used mass-spectrometry based proteomic analysis of unstimulated and carbachol stimulated newborn wild-type (WT) and cystic fibrosis transmembrane conductance regulator (CFTR) null (CF) piglet airways to study proteins in the airway surface liquid and mucus, to investigate if levels of MUC5AC and MUC5B were affected by carbachol stimulation and whether the proteins clustered according to function. RESULTS: Proteins in the first four extracted fractions clustered together and the fifth fraction contained the mucus cluster, mucins and other proteins known to associate with mucins, whereas the traditional airway surface liquid proteins clustered to fraction 1-4 and were absent from the mucus fraction. Carbachol stimulation resulted in increased MUC5AC and MUC5B. CONCLUSIONS: These results indicate a distinct separation between proteins in the washable surface liquid and the mucus fraction. In fractions 1-4 from newborn CF piglets an additional cluster containing acute phase proteins was observed, suggesting an early inflammatory response in CF piglets. Alternatively, increased levels of these proteins could indicate altered lung development in the CF piglets. This observation suggests that CF airway disease is present at birth and thus, treatment should commence directly after diagnosis.


Asunto(s)
Fibrosis Quística , Animales , Porcinos , Fibrosis Quística/metabolismo , Proteoma/metabolismo , Carbacol , Proteómica , Moco/metabolismo , Mucinas/metabolismo , Células Caliciformes/metabolismo
7.
Xenotransplantation ; 30(5): e12820, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37735958

RESUMEN

Xenotransplantation is a promising approach to reduce organ shortage, while genetic modification of donor pigs has significantly decreased the immunogenic burden of xenotransplants, organ rejection is still a hurdle. Genetically modified pig organs are used in xenotransplantation research, and the first clinical pig-to-human heart transplantation was performed in 2022. However, the impact of genetic modification has not been investigated on a cellular level yet. Endothelial cells (EC) and their sugar-rich surface known as the glycocalyx are the first barrier encountering the recipient's immune system, making them a target for rejection. We have previously shown that wild type venous but not arterial EC were protected against heparan sulfate (HS) shedding after activation with human serum or human tumor necrosis factor alpha (TNF𝛼). Using a 2D microfluidic system we investigated the glycocalyx dynamics of genetically modified porcine arterial and venous EC (Gal𝛼1,3 Gal knock-out, transgenic for human CD46 and thrombomodulin, GTKO/hCD46/hTM) after activation with human serum or human TNF𝛼. Interestingly, we observed that GTKO/hCD46/hTM arterial cells, additionally to venous cells, do not shed HS. Unscathed HS on GTKO/hCD46/hTM EC correlated with reduced complement deposition, suggesting that protection against complement activation contributes to maintaining an intact glycocalyx layer on arterial EC. This protection was lost on GTKO/hCD46/hTM cells after simultaneous perfusion with human serum and human TNF𝛼. HS shedding on arterial cells and increased complement deposition on both arterial and venous cells was observed. These findings suggest that GTKO/hCD46/hTM EC revert to a proinflammatory phenotype in an inflammatory xenotransplantation setting, potentially favoring transplant rejection.


Asunto(s)
Células Endoteliales , Glicocálix , Animales , Humanos , Porcinos , Trasplante Heterólogo , Animales Modificados Genéticamente , Proteínas del Sistema Complemento
8.
Circulation ; 143(20): 1991-2006, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33648345

RESUMEN

BACKGROUND: Human engineered heart tissue (EHT) transplantation represents a potential regenerative strategy for patients with heart failure and has been successful in preclinical models. Clinical application requires upscaling, adaptation to good manufacturing practices, and determination of the effective dose. METHODS: Cardiomyocytes were differentiated from 3 different human induced pluripotent stem cell lines including one reprogrammed under good manufacturing practice conditions. Protocols for human induced pluripotent stem cell expansion, cardiomyocyte differentiation, and EHT generation were adapted to substances available in good manufacturing practice quality. EHT geometry was modified to generate patches suitable for transplantation in a small-animal model and perspectively humans. Repair efficacy was evaluated at 3 doses in a cryo-injury guinea pig model. Human-scale patches were epicardially transplanted onto healthy hearts in pigs to assess technical feasibility. RESULTS: We created mesh-structured tissue patches for transplantation in guinea pigs (1.5×2.5 cm, 9-15×106 cardiomyocytes) and pigs (5×7 cm, 450×106 cardiomyocytes). EHT patches coherently beat in culture and developed high force (mean 4.6 mN). Cardiomyocytes matured, aligned along the force lines, and demonstrated advanced sarcomeric structure and action potential characteristics closely resembling human ventricular tissue. EHT patches containing ≈4.5, 8.5, 12×106, or no cells were transplanted 7 days after cryo-injury (n=18-19 per group). EHT transplantation resulted in a dose-dependent remuscularization (graft size: 0%-12% of the scar). Only high-dose patches improved left ventricular function (+8% absolute, +24% relative increase). The grafts showed time-dependent cardiomyocyte proliferation. Although standard EHT patches did not withstand transplantation in pigs, the human-scale patch enabled successful patch transplantation. CONCLUSIONS: EHT patch transplantation resulted in a partial remuscularization of the injured heart and improved left ventricular function in a dose-dependent manner in a guinea pig injury model. Human-scale patches were successfully transplanted in pigs in a proof-of-principle study.


Asunto(s)
Miocardio/patología , Miocitos Cardíacos/metabolismo , Ingeniería de Tejidos/métodos , Animales , Modelos Animales de Enfermedad , Cobayas , Humanos
9.
Am J Respir Cell Mol Biol ; 65(4): 378-389, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34102087

RESUMEN

Excessive lung inflammation and airway epithelial damage are hallmarks of human inflammatory lung diseases, such as cystic fibrosis (CF). Enhancement of innate immunity provides protection against pathogens while reducing lung-damaging inflammation. However, the mechanisms underlying innate immunity-mediated protection in the lung remain mysterious, in part because of the lack of appropriate animal models for these human diseases. TLR5 (Toll-like receptor 5) stimulation by its specific ligand, the bacterial protein flagellin, has been proposed to enhance protection against several respiratory infectious diseases, although other cellular events, such as calcium signaling, may also control the intensity of the innate immune response. Here, we investigated the molecular events prompted by stimulation with flagellin and its role in regulating innate immunity in the lung of the pig, which is anatomically and genetically more similar to humans than rodent models. We found that flagellin treatment modulated NF-κB signaling and intracellular calcium homeostasis in airway epithelial cells. Flagellin pretreatment reduced the NF-κB nuclear translocation and the expression of proinflammatory cytokines to a second flagellin stimulus as well as to Pseudomonas aeruginosa infection. Moreover, in vivo administration of flagellin decreased the severity of P. aeruginosa-induced pneumonia. Then we confirmed these beneficial effects of flagellin in a pathological model of CF by using ex vivo precision-cut lung slices from a CF pigz model. These results provide evidence that flagellin treatment contributes to a better regulation of the inflammatory response in inflammatory lung diseases such as CF.


Asunto(s)
Flagelina/farmacología , Inflamación/tratamiento farmacológico , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Animales , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Flagelina/inmunología , Flagelina/metabolismo , Inmunidad Innata/efectos de los fármacos , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología , Transducción de Señal/efectos de los fármacos , Porcinos
10.
Respir Res ; 22(1): 303, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34823518

RESUMEN

BACKGROUND: The mucociliary clearance system driven by beating cilia protects the airways from inhaled microbes and particles. Large particles are cleared by mucus bundles made in submucosal glands by parallel linear polymers of the MUC5B mucins. However, the structural organization and function of the mucus generated in surface goblet cells are poorly understood. METHODS: The origin and characteristics of different mucus structures were studied on live tissue explants from newborn wild-type (WT), cystic fibrosis transmembrane conductance regulator (CFTR) deficient (CF) piglets and weaned pig airways using video microscopy, Airyscan imaging and electron microscopy. Bronchoscopy was performed in juvenile pigs in vivo. RESULTS: We have identified a distinct mucus formation secreted from the surface goblet cells with a diameter less than two micrometer. This type of mucus was named mucus threads. With time mucus threads gathered into larger mucus assemblies, efficiently collecting particles. The previously observed Alcian blue stained mucus bundles were around 10 times thicker than the threads. Together the mucus bundles, mucus assemblies and mucus threads cleared the pig trachea from particles. CONCLUSIONS: These results demonstrate that normal airway mucus is more complex and has a more variable structural organization and function than was previously understood. These observations emphasize the importance of studying young objects to understand the function of a non-compromised lung.


Asunto(s)
Células Caliciformes/fisiología , Depuración Mucociliar/fisiología , Moco/citología , Tráquea/fisiología , Animales , Broncoscopía , Células Caliciformes/citología , Microscopía por Video , Modelos Animales , Porcinos
11.
Xenotransplantation ; 28(2): e12664, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33241624

RESUMEN

BACKGROUND: Many genetically multi-modified donor lines for xenotransplantation have a background of domestic pigs with rapid body and organ growth. The intrinsic growth potential of porcine xeno-organs may impair their long-term function after orthotopic transplantation in non-human primate models. Since growth hormone is a major stimulator of postnatal growth, we deleted its receptor (GHR-KO) to reduce the size of donor pigs in one step. METHODS: Heart weight and proteome profile of myocardium were investigated in GHR-KO and control pigs. GHR-KO mutations were introduced using CRISPR/Cas9 in an α1,3-galactosyltransferase (GGTA1)-deficient background expressing the human cluster of differentiation (hCD46) and human thrombomodulin (hTHBD) to generate quadruple-modified (4GM) pigs. RESULTS: At age 6 months, GHR-KO pigs had a 61% reduced body weight and a 63% reduced heart weight compared with controls. The mean minimal diameter of cardiomyocytes was 28% reduced. A holistic proteome study of myocardium samples from the two groups did not reveal prominent differences. Two 4GM founder sows had low serum insulin-like growth factor 1 (IGF1) levels (24 ± 1 ng/mL) and reached body weights of 70.3 and 73.4 kg at 9 months. Control pigs with IGF1 levels of 228 ± 24 ng/mL reached this weight range three months earlier. The 4GM sows showed normal sexual development and were mated with genetically multi-modified boars. Offspring revealed the expected Mendelian transmission of the genetic modifications and consistent expression of the transgenes. CONCLUSION: GHR-KO donor pigs can be used at an age beyond the steepest phase of their growth curve, potentially reducing the problem of xeno-organ overgrowth in preclinical studies.


Asunto(s)
Galactosiltransferasas , Receptores de Somatotropina , Animales , Animales Modificados Genéticamente , Femenino , Técnicas de Inactivación de Genes , Xenoinjertos , Masculino , Primates , Receptores de Somatotropina/genética , Sus scrofa , Porcinos , Trasplante Heterólogo
12.
Xenotransplantation ; 28(1): e12636, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32841431

RESUMEN

BACKGROUND: Successful preclinical transplantations of porcine hearts into baboon recipients are required before commencing clinical trials. Despite years of research, over half of the orthotopic cardiac xenografts were lost during the first 48 hours after transplantation, primarily caused by perioperative cardiac xenograft dysfunction (PCXD). To decrease the rate of PCXD, we adopted a preservation technique of cold non-ischemic perfusion for our ongoing pig-to-baboon cardiac xenotransplantation project. METHODS: Fourteen orthotopic cardiac xenotransplantation experiments were carried out with genetically modified juvenile pigs (GGTA1- KO/hCD46/hTBM) as donors and captive-bred baboons as recipients. Organ preservation was compared according to the two techniques applied: cold static ischemic cardioplegia (IC; n = 5) and cold non-ischemic continuous perfusion (CP; n = 9) with an oxygenated albumin-containing hyperoncotic cardioplegic solution containing nutrients, erythrocytes and hormones. Prior to surgery, we measured serum levels of preformed anti-non-Gal-antibodies. During surgery, hemodynamic parameters were monitored with transpulmonary thermodilution. Central venous blood gas analyses were taken at regular intervals to estimate oxygen extraction, as well as lactate production. After surgery, we measured troponine T and serum parameters of the recipient's kidney, liver and coagulation functions. RESULTS: In porcine grafts preserved with IC, we found significantly depressed systolic cardiac function after transplantation which did not recover despite increasing inotropic support. Postoperative oxygen extraction and lactate production were significantly increased. Troponin T, creatinine, aspartate aminotransferase levels were pathologically high, whereas prothrombin ratios were abnormally low. In three of five IC experiments, PCXD developed within 24 hours. By contrast, all nine hearts preserved with CP retained fully preserved systolic function, none showed any signs of PCXD. Oxygen extraction was within normal ranges; serum lactate as well as parameters of organ functions were only mildly elevated. Preformed anti-non-Gal-antibodies were similar in recipients receiving grafts from either IC or CP preservation. CONCLUSIONS: While standard ischemic cardioplegia solutions have been used with great success in human allotransplantation over many years, our data indicate that they are insufficient for preservation of porcine hearts transplanted into baboons: Ischemic storage caused severe impairment of cardiac function and decreased tissue oxygen supply, leading to multi-organ failure in more than half of the xenotransplantation experiments. In contrast, cold non-ischemic heart preservation with continuous perfusion reliably prevented early graft failure. Consistent survival in the perioperative phase is a prerequisite for preclinical long-term results after cardiac xenotransplantation.


Asunto(s)
Trasplante de Corazón , Animales , Xenoinjertos , Papio , Perfusión , Porcinos , Trasplante Heterólogo
13.
Proc Natl Acad Sci U S A ; 115(11): 2770-2775, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29483258

RESUMEN

Mammalian preimplantation development involves two lineage specifications: first, the CDX2-expressing trophectoderm (TE) and a pluripotent inner cell mass (ICM) are separated during blastocyst formation. Second, the pluripotent epiblast (EPI; expressing NANOG) and the differentiated primitive endoderm (PrE; expressing GATA6) diverge within the ICM. Studies in mice revealed that OCT4/POU5F1 is at the center of a pluripotency regulatory network. To study the role of OCT4 in bovine preimplantation development, we generated OCT4 knockout (KO) fibroblasts by CRISPR-Cas9 and produced embryos by somatic cell nuclear transfer (SCNT). SCNT embryos from nontransfected fibroblasts and embryos produced by in vitro fertilization served as controls. In OCT4 KO morulae (day 5), ∼70% of the nuclei were OCT4 positive, indicating that maternal OCT4 mRNA partially maintains OCT4 protein expression during early development. In contrast, OCT4 KO blastocysts (day 7) lacked OCT4 protein entirely. CDX2 was detected only in TE cells; OCT4 is thus not required to suppress CDX2 in the ICM. Control blastocysts showed a typical salt-and-pepper distribution of NANOG- and GATA6-positive cells in the ICM. In contrast, NANOG was absent or very faint in the ICM of OCT4 KO blastocysts, and no cells expressing exclusively NANOG were observed. This mimics findings in OCT4-deficient human blastocysts but is in sharp contrast to Oct4-null mouse blastocysts, where NANOG persists and PrE development fails. Our study supports bovine embryogenesis as a model for early human development and exemplifies a general strategy for studying the roles of specific genes in embryos of domestic species.


Asunto(s)
Blastocisto/metabolismo , Bovinos/embriología , Proteína Homeótica Nanog/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Animales , Factor de Transcripción CDX2/genética , Factor de Transcripción CDX2/metabolismo , Bovinos/genética , Bovinos/metabolismo , Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mórula/metabolismo , Proteína Homeótica Nanog/genética , Factor 3 de Transcripción de Unión a Octámeros/genética
14.
Proc Natl Acad Sci U S A ; 115(4): 708-713, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29311328

RESUMEN

Genetically engineered pigs play an indispensable role in the study of rare monogenic diseases. Pigs harboring a gene responsible for a specific disease can be efficiently generated via somatic cell cloning. The generation of somatic cell-cloned pigs from male cells with mutation(s) in an X chromosomal gene is a reliable and straightforward method for reproducing X-linked genetic diseases (XLGDs) in pigs. However, the severe symptoms of XLGDs are often accompanied by impaired growth and reproductive disorders, which hinder the reproduction of these valuable model animals. Here, we generated unique chimeric boars composed of mutant cells harboring a lethal XLGD and normal cells. The chimeric boars exhibited the cured phenotype with fertility while carrying and transmitting the genotype of the XLGD. This unique reproduction system permits routine production of XLGD model pigs through the male-based breeding, thereby opening an avenue for translational research using disease model pigs.


Asunto(s)
Técnicas de Cultivo de Embriones/métodos , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Reproducción/genética , Animales , Animales Modificados Genéticamente/genética , Cruzamiento , Quimera , Clonación de Organismos/métodos , Modelos Animales de Enfermedad , Fertilidad , Técnicas de Inactivación de Genes/métodos , Ingeniería Genética/métodos , Masculino , Técnicas de Transferencia Nuclear , Porcinos/genética
15.
Xenotransplantation ; 27(5): e12585, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32056300

RESUMEN

The activation of the endothelial surface in xenografts is still a poorly understood process and the consequences are unpredictable. The role of Ca2+ -messaging during the activation of endothelial cells is well recognized and routinely measured by synthetic Ca2+ -sensitive fluorophors. However, these compounds require fresh loading immediately before each experiment and in particular when grown in state-of-the-art 3D cell culture systems, endothelial cells are difficult to access with such sensors. Therefore, we developed transgenic pigs expressing a Ca2+ -sensitive protein and examined its principal characteristics. Primary transgenic endothelial cells stimulated by ATP showed a definite and short influx of Ca2+ into the cytosol, whereas exposure to human serum resulted in a more intense and sustained response. Surprisingly, not all endothelial cells reacted identically to a stimulus, rather activation took place in adjacent cells in a timely decelerated way and with distinct intensities. This effect was again more pronounced when cells were stimulated with human serum. Finally, we show clear evidence that antibody binding alone significantly activated endothelial cells, whereas antibody depletion dramatically reduced the stimulatory potential of serum. Transgenic porcine endothelial cells expressing a Ca2+ -sensor represent an interesting tool to dissect factors inducing activation of porcine endothelial cells after exposure to human blood or serum.


Asunto(s)
Señalización del Calcio , Células Endoteliales , Suero , Animales , Animales Modificados Genéticamente , Calcio , Células Cultivadas , Células Endoteliales/citología , Humanos , Porcinos , Trasplante Heterólogo
16.
Transpl Int ; 33(4): 437-449, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31926034

RESUMEN

Clinical xenotransplantation will only be feasible when present limitations can be controlled sufficiently. Activation of endothelium and complement as well as coagulopathy and thrombotic microangiopathy (TMA) is important barriers. Transgenic expression of hTBM on porcine endothelial cells is a reasonable approach to reduce activation of haemostasis. Endothelial cells from wild-type pigs as well from pigs expressing hTBM alone or in combination with hCD46 and knockout of the alpha-1,3,-galactosyltransferase (GTKO) were perfused with platelet-rich plasma in a microfluidic flow chamber. Platelet aggregation and activation, coagulation, complement and endothelial cell activation were assessed. Perfusion of wild-type porcine aortic endothelial cells (PAEC) resulted in distinct platelet aggregation. Expression of hTBM in either mono-transgenic or triple-transgenic (GTKO/hCD46/hTBM) PAEC showed significantly reduced or absent platelet aggregation. Flow cytometric analysis of platelets showed an increased CD62P expression in wild-type PAEC and significantly reduced expression in mono- or triple-transgenic PAEC. Activation of coagulation measured by TAT occured in WT PAEC and was clearly reduced in hTBM and GTKO/hCD46/hTBM PAEC. Activation of complement and endothelial cells was only reduced in GTKO/hCD46/hTBM but not in PAEC expressing hTBM alone. Expression of hTBM was able to prevent activation of coagulation and platelet aggregation in mono- and triple-transgenic PAEC, while activation of complement and endothelial cells was not reduced in mono-transgenic PAEC.


Asunto(s)
Células Endoteliales , Trombomodulina , Animales , Proteínas del Sistema Complemento , Endotelio , Humanos , Agregación Plaquetaria , Porcinos , Trombomodulina/genética , Trasplante Heterólogo
17.
J Biol Chem ; 293(15): 5746-5754, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29440393

RESUMEN

Most MUC5B mucin polymers in the upper airways of humans and pigs are produced by submucosal glands. MUC5B forms N-terminal covalent dimers that are further packed into larger assemblies because of low pH and high Ca2+ in the secretory granule of the mucin-producing cell. We purified the recombinant MUC5B N-terminal covalent dimer and used single-particle electron microscopy to study its structure under intracellular conditions. We found that, at intragranular pH, the dimeric MUC5B organized into head-to-head noncovalent tetramers where the von Willebrand D1-D2 domains hooked into each other. These N-terminal tetramers further formed long linear complexes from which, we suggest, the mucin domains and their C termini project radially outwards. Using conventional and video microscopy, we observed that, upon secretion into the submucosal gland ducts, a flow of bicarbonate-rich fluid passes the mucin-secreting cells. We suggest that this unfolds and pulls out the MUC5B assemblies into long linear threads. These further assemble into thicker mucin bundles in the glandular ducts before emerging at the gland duct opening. We conclude that the combination of intracellular packing of the MUC5B mucin and the submucosal gland morphology creates an efficient machine for producing linear mucin bundles.


Asunto(s)
Calcio/química , Mucina 5B/química , Multimerización de Proteína , Animales , Calcio/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Mucina 5B/genética , Mucina 5B/metabolismo , Dominios Proteicos , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Porcinos
18.
Reprod Fertil Dev ; 31(4): 820-826, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30384878

RESUMEN

Immunosurgical isolation of the inner cell mass (ICM) from blastocysts is based on complement-mediated lysis of antibody-coated trophectoderm (TE) cells. Conventionally, anti-species antisera, containing antibodies against multiple undefined TE-cell epitopes, have been used as the antibody source. We previously generated α-1,3-galactosyltransferase deficient (GTKO) pigs to prevent hyperacute rejection of pig-to-primate xenotransplants. Since GTKO pigs lack galactosyl-α-1,3-galactose (αGal) but are exposed to this antigen (e.g. αGal on gut bacteria), they produce anti-αGal antibodies. In this study, we examined whether serum from GTKO pigs could be used as a novel antibody source for multi-species embryo immunosurgery. Mouse, rabbit, pig and cattle blastocysts were used for the experiment. Expression of αGal epitopes on the surface of TE cells was detected in blastocysts of all species tested. GTKO pig serum contained sufficient anti-αGal antibodies to induce complement-mediated lysis of TE cells in blastocysts from all species investigated. Intact ICMs could be successfully recovered and the majority showed the desired level of purity. Our study demonstrates that GTKO pig serum is a reliable and effective source of antibodies targeting the αGal epitopes of TE cells for multi-species embryo immunosurgery.


Asunto(s)
Blastocisto/inmunología , Epítopos , Galactosa/inmunología , Animales , Bovinos , Ratones , Conejos , Porcinos
19.
Int J Mol Sci ; 20(19)2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31557793

RESUMEN

Coronary heart diseases are of high relevance for health care systems in developed countries regarding patient numbers and costs. Disappointingly, the enormous effort put into the development of innovative therapies and the high numbers of clinical studies conducted are counteracted by the low numbers of therapies that become clinically effective. Evidently, pre-clinical research in its present form does not appear informative of the performance of treatments in the clinic and, even more relevant, it appears that there is hardly any consent about how to improve the predictive capacity of pre-clinical experiments. According to the steadily increasing relevance that pig models have gained in biomedical research in the recent past, we anticipate that research in pigs can be highly predictive for ischemia-reperfusion injury (IRI) therapies as well. Thus, we here describe the significance of pig models in IRI, give an overview about recent developments in evaluating such models by clinically relevant methods and present the latest insight into therapies applied to pigs under IRI.


Asunto(s)
Biomarcadores , Susceptibilidad a Enfermedades , Daño por Reperfusión/etiología , Daño por Reperfusión/metabolismo , Animales , Biomimética , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Óxido Nítrico/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Porcinos
20.
J Biol Chem ; 292(48): 19935-19951, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28972138

RESUMEN

Lectins play important roles in infections by pathogenic bacteria, for example, in host colonization, persistence, and biofilm formation. The Gram-negative entomopathogenic bacterium Photorhabdus luminescens symbiotically lives in insect-infecting Heterorhabditis nematodes and kills the insect host upon invasion by the nematode. The P. luminescens genome harbors the gene plu2096, coding for a novel lectin that we named PllA. We analyzed the binding properties of purified PllA with a glycan array and a binding assay in solution. Both assays revealed a strict specificity of PllA for α-galactoside-terminating glycoconjugates. The crystal structures of apo PllA and complexes with three different ligands revealed the molecular basis for the strict specificity of this lectin. Furthermore, we found that a 90° twist in subunit orientation leads to a peculiar quaternary structure compared with that of its ortholog LecA from Pseudomonas aeruginosa We also investigated the utility of PllA as a probe for detecting α-galactosides. The α-Gal epitope is present on wild-type pig cells and is the main reason for hyperacute organ rejection in pig to primate xenotransplantation. We noted that PllA specifically recognizes this epitope on the glycan array and demonstrated that PllA can be used as a fluorescent probe to detect this epitope on primary porcine cells in vitro In summary, our biochemical and structural analyses of the P. luminescens lectin PllA have disclosed the structural basis for PllA's high specificity for α-galactoside-containing ligands, and we show that PllA can be used to visualize the α-Gal epitope on porcine tissues.


Asunto(s)
Galactósidos/metabolismo , Glicoconjugados/metabolismo , Lectinas/metabolismo , Photorhabdus/metabolismo , Secuencia de Aminoácidos , Animales , Pruebas de Hemaglutinación , Lectinas/química , Lectinas/aislamiento & purificación , Sondas Moleculares , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA