Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Cell ; 151(6): 1345-57, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23217715

RESUMEN

Flies, like all animals, need to find suitable and safe food. Because the principal food source for Drosophila melanogaster is yeast growing on fermenting fruit, flies need to distinguish fruit with safe yeast from yeast covered with toxic microbes. We identify a functionally segregated olfactory circuit in flies that is activated exclusively by geosmin. This microbial odorant constitutes an ecologically relevant stimulus that alerts flies to the presence of harmful microbes. Geosmin activates only a single class of sensory neurons expressing the olfactory receptor Or56a. These neurons target the DA2 glomerulus and connect to projection neurons that respond exclusively to geosmin. Activation of DA2 is sufficient and necessary for aversion, overrides input from other olfactory pathways, and inhibits positive chemotaxis, oviposition, and feeding. The geosmin detection system is a conserved feature in the genus Drosophila that provides flies with a sensitive, specific means of identifying unsuitable feeding and breeding sites.


Asunto(s)
Bacterias/química , Drosophila melanogaster/fisiología , Hongos/química , Naftoles , Células Receptoras Sensoriales/fisiología , Animales , Células Quimiorreceptoras/metabolismo , Drosophila/fisiología , Conducta Alimentaria , Femenino , Masculino , Naftoles/química , Vías Olfatorias , Oviposición , Receptores Odorantes/metabolismo
2.
Nature ; 579(7799): 402-408, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32132713

RESUMEN

The evolution of animal behaviour is poorly understood1,2. Despite numerous correlations between interspecific divergence in behaviour and nervous system structure and function, demonstrations of the genetic basis of these behavioural differences remain rare3-5. Here we develop a neurogenetic model, Drosophila sechellia, a species that displays marked differences in behaviour compared to its close cousin Drosophila melanogaster6,7, which are linked to its extreme specialization on noni fruit (Morinda citrifolia)8-16. Using calcium imaging, we identify olfactory pathways in D. sechellia that detect volatiles emitted by the noni host. Our mutational analysis indicates roles for different olfactory receptors in long- and short-range attraction to noni, and our cross-species allele-transfer experiments demonstrate that the tuning of one of these receptors is important for species-specific host-seeking. We identify the molecular determinants of this functional change, and characterize their evolutionary origin and behavioural importance. We perform circuit tracing in the D. sechellia brain, and find that receptor adaptations are accompanied by increased sensory pooling onto interneurons as well as species-specific central projection patterns. This work reveals an accumulation of molecular, physiological and anatomical traits that are linked to behavioural divergence between species, and defines a model for investigating speciation and the evolution of the nervous system.


Asunto(s)
Drosophila/citología , Drosophila/metabolismo , Especificidad del Huésped , Morinda , Odorantes/análisis , Vías Olfatorias/fisiología , Receptores Odorantes/metabolismo , Alelos , Animales , Conducta Animal , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/fisiología , Calcio/metabolismo , Drosophila/genética , Drosophila/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Drosophila simulans/fisiología , Evolución Molecular , Femenino , Frutas/parasitología , Interneuronas/metabolismo , Masculino , Modelos Biológicos , Morinda/parasitología , Vías Olfatorias/citología , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/genética , Especificidad de la Especie
3.
Chem Senses ; 492024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38606759

RESUMEN

Where to lay the eggs is a crucial decision for females as it influences the success of their offspring. Female flies prefer to lay eggs on food already occupied and consumed by larvae, which facilitates social feeding, but potentially could also lead to detrimental interactions between species. Whether females can modulate their attraction to cues associated with different species is unknown. Here, we analyzed the chemical profiles of eggs and larvae of 16 Drosophila species, and tested whether Drosophila flies would be attracted to larvae-treated food or food with eggs from 6 different Drosophila species. The chemical analyses revealed that larval profiles from different species are strongly overlapping, while egg profiles exhibit significant species specificity. Correspondingly, female flies preferred to lay eggs where they detected whatever species' larval cues, while we found a significant oviposition preference only for eggs of some species but not others. Our findings suggest that both larval and egg cues present at a given substrate can drive oviposition preference in female flies.


Asunto(s)
Drosophila , Oviposición , Animales , Femenino , Larva , Señales (Psicología) , Alimentos
4.
J Chem Ecol ; 50(1-2): 11-17, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37851278

RESUMEN

Swarming locusts cause huge plagues across the world threatening food production. Before swarms form, locust populations exhibit a dramatic phase change from a solitary to a gregarious phase. The cause of this phase change is a complicated interplay of conspecific and environmental cues and is, especially for one of the major pests, the migratory locust Locusta migratoria, still not well understood. Here we study the behavior of both solitary and gregarious L. migratoria towards the headspace odors of conspecifics. As we do not find a general attraction of gregarious animals to the headspace of gregarious conspecifics, swarm formation does not seem to be mainly governed by olfactory aggregation cues. When testing for potential mating signals, we observe that the headspace of virgin gregarious females is highly attractive only towards virgin males of the same phase, while mated gregarious males and solitary males, regardless of their mating state, do not become attracted. Interestingly, this phase-specific attraction goes along with the finding, that mating behavior in experiments with inter-phasic pairings is extremely rare. Our data suggest that odor emissions in L. migratoria play a significant role in a mating context.


Asunto(s)
Locusta migratoria , Animales , Femenino , Masculino , Olfato , Conducta Animal , Odorantes , Reproducción
5.
Proc Natl Acad Sci U S A ; 116(43): 21828-21833, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31591212

RESUMEN

Finding a suitable oviposition site is a challenging task for a gravid female moth. At the same time, it is of paramount importance considering the limited capability of most caterpillars to relocate to alternative host plants. The hawkmoth, Manduca sexta (Sphingidae), oviposits on solanaceous plants. Larvae hatching on a plant that is already attacked by conspecific caterpillars can face food competition, as well as an increased exposure to predators and induced plant defenses. Here, we show that feces from conspecific caterpillars are sufficient to deter a female M. sexta from ovipositing on a plant and that this deterrence is based on the feces-emitted carboxylic acids 3-methylpentanoic acid and hexanoic acid. Using a combination of genome editing (CRISPR-Cas9), electrophysiological recordings, calcium imaging, and behavioral analyses, we demonstrate that ionotropic receptor 8a (IR8a) is essential for acid-mediated feces avoidance in ovipositing hawkmoths.


Asunto(s)
Heces/química , Oviposición/fisiología , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores Odorantes/fisiología , Animales , Caproatos/metabolismo , Femenino , Mariposas Nocturnas/anatomía & histología , Odorantes , Pentanos/metabolismo , Plantas
6.
Proc Natl Acad Sci U S A ; 116(31): 15677-15685, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31320583

RESUMEN

The hawkmoth Manduca sexta and one of its preferred hosts in the North American Southwest, Datura wrightii, share a model insect-plant relationship based on mutualistic and antagonistic life-history traits. D. wrightii is the innately preferred nectar source and oviposition host for M. sexta Hence, the hawkmoth is an important pollinator while the M. sexta larvae are specialized herbivores of the plant. Olfactory detection of plant volatiles plays a crucial role in the behavior of the hawkmoth. In vivo, the odorant receptor coreceptor (Orco) is an obligatory component for the function of odorant receptors (ORs), a major receptor family involved in insect olfaction. We used CRISPR-Cas9 targeted mutagenesis to knock out (KO) the MsexOrco gene to test the consequences of a loss of OR-mediated olfaction in an insect-plant relationship. Neurophysiological characterization revealed severely reduced antennal and antennal lobe responses to representative odorants emitted by D. wrightii In a wind-tunnel setting with a flowering plant, Orco KO hawkmoths showed disrupted flight orientation and an ablated proboscis extension response to the natural stimulus. The Orco KO gravid female displayed reduced attraction toward a nonflowering plant. However, more than half of hawkmoths were able to use characteristic odor-directed flight orientation and oviposit on the host plant. Overall, OR-mediated olfaction is essential for foraging and pollination behaviors, but plant-seeking and oviposition behaviors are sustained through additional OR-independent sensory cues.


Asunto(s)
Conducta Alimentaria/fisiología , Proteínas de Insectos/metabolismo , Manduca/metabolismo , Oviposición/fisiología , Receptores Odorantes/metabolismo , Animales , Sistemas CRISPR-Cas , Femenino , Proteínas de Insectos/genética , Masculino , Manduca/genética , Receptores Odorantes/genética
7.
Proc Natl Acad Sci U S A ; 116(29): 14651-14660, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31262827

RESUMEN

Plant volatile organic compounds (VOCs) mediate many interactions, and the function of common VOCs is especially likely to depend on ecological context. We used a genetic mapping population of wild tobacco, Nicotiana attenuata, originating from a cross of 2 natural accessions from Arizona and Utah, separated by the Grand Canyon, to dissect genetic variation controlling VOCs. Herbivory-induced leaf terpenoid emissions varied substantially, while green leaf volatile emissions were similar. In a field experiment, only emissions of linalool, a common VOC, correlated significantly with predation of the herbivore Manduca sexta by native predators. Using quantitative trait locus mapping and genome mining, we identified an (S)-(+)-linalool synthase (NaLIS). Genome resequencing, gene cloning, and activity assays revealed that the presence/absence of a 766-bp sequence in NaLIS underlies the variation of linalool emissions in 26 natural accessions. We manipulated linalool emissions and composition by ectopically expressing linalool synthases for both enantiomers, (S)-(+)- and (R)-(-)-linalool, reported to oppositely affect M. sexta oviposition, in the Arizona and Utah accessions. We used these lines to test ovipositing moths in increasingly complex environments. The enantiomers had opposite effects on oviposition preference, but the magnitude of the effect depended strongly both on plant genetic background, and complexity of the bioassay environment. Our study reveals that the emission of linalool, a common VOC, differs by orders-of-magnitude among geographically interspersed conspecific plants due to allelic variation in a linalool synthase, and that the response of a specialist herbivore to linalool depends on enantiomer, plant genotype, and environmental complexity.


Asunto(s)
Monoterpenos Acíclicos/toxicidad , Hidroliasas/genética , Manduca/efectos de los fármacos , Nicotiana/genética , Conducta Predatoria/efectos de los fármacos , Monoterpenos Acíclicos/metabolismo , Animales , Arizona , Femenino , Genotipo , Geografía , Interacciones Huésped-Parásitos/genética , Hidroliasas/metabolismo , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Masculino , Manduca/fisiología , Oviposición/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/parasitología , Proteínas de Plantas , Sitios de Carácter Cuantitativo , Estereoisomerismo , Nicotiana/enzimología , Nicotiana/parasitología , Utah , Compuestos Orgánicos Volátiles
8.
J Exp Biol ; 224(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34427309

RESUMEN

Insect pollinators, such as the tobacco hawkmoth Manduca sexta, are known for locating flowers and learning floral odors by using their antennae. A recent study revealed, however, that the tobacco hawkmoth additionally possesses olfactory sensilla at the tip of its proboscis. Here, we asked whether this second 'nose' of the hawkmoth is involved in odor learning, similar to the antennae. We first show that M. sexta foraging efficiency at Nicotiana attenuata flowers increases with experience. This raises the question whether olfactory learning with the proboscis plays a role during flower handling. By rewarding the moths at an artificial flower, we show that, although moths learn an odor easily when they perceive it with their antennae, experiencing the odor just with the proboscis is not sufficient for odor learning. Furthermore, experiencing the odor with the antennae during training does not affect the behavior of the moths when they later detect the learned odor with the proboscis only. Therefore, there seems to be no cross-talk between the antennae and proboscis, and information learnt by the antennae cannot be retrieved by the proboscis.


Asunto(s)
Manduca , Mariposas Nocturnas , Animales , Flores , Aprendizaje , Odorantes
9.
J Chem Ecol ; 47(12): 1042-1048, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34546516

RESUMEN

Many pollinating insects exhibit flower constancy, i.e. they target flower species they have already experienced and fed from. While the insects might profit from reduced handling costs when revisiting similar flowers, flower constancy, in addition, is of benefit for the plants as it guarantees pollen transfer to conspecifics. Here we investigate whether the previous experience of an insect can also result in oviposition constancy, i.e. whether ovipositing on a given plant species will drive future oviposition preference in a female insect. We show that female hawkmoths (Manduca sexta), after having oviposited on a given plant species only once, indeed will prefer this plant in future oviposition choices. As oviposition preference is even affected 24 h after the moth has oviposited on a given plant, long term memory seems to be involved in this oviposition constancy. Our data furthermore suggest that, as shown for flower constancy, ovipositing moths increase their handling efficiency by targeting those host plants they have already experienced.


Asunto(s)
Cadena Alimentaria , Manduca/fisiología , Oviposición , Animales , Femenino , Memoria a Largo Plazo , Hojas de la Planta/química , Especificidad de la Especie
10.
Proc Natl Acad Sci U S A ; 115(41): 10470-10474, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30249656

RESUMEN

The desert ant Cataglyphis fortis inhabits the North African saltpans where it individually forages for dead arthropods. Homing ants rely mainly on path integration, i.e., the processing of directional information from a skylight compass and distance information from an odometer. Due to the far-reaching foraging runs, path integration is error-prone and guides the ants only to the vicinity of the nest, where the ants then use learned visual and olfactory cues to locate the inconspicuous nest entrance. The learning of odors associated with the nest entrance is well established. We furthermore know that foraging Cataglyphis use the food-derived necromone linoleic acid to pinpoint dead insects. Here we show that Cataglyphis in addition can learn the association of a given odor with food. After experiencing food crumbs that were spiked with an innately neutral odor, ants were strongly attracted by the same odor during their next foraging journey. We therefore explored the characteristics of the ants' food-odor memory and identified pronounced differences from their memory for nest-associated odors. Nest odors are learned only after repeated learning trials and become ignored as soon as the ants do not experience them at the nest anymore. In contrast, ants learn food odors after a single experience, remember at least 14 consecutively learned food odors, and do so for the rest of their lives. As an ant experiences many food items during its lifetime, but only a single nest, differentially organized memories for both contexts might be adaptive.


Asunto(s)
Conducta de Elección/fisiología , Conducta Alimentaria/fisiología , Preferencias Alimentarias/fisiología , Memoria/fisiología , Comportamiento de Nidificación/fisiología , Animales , Hormigas
11.
J Chem Ecol ; 46(10): 987-996, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32875538

RESUMEN

Insect pollination is essential to many unmanaged and agricultural systems and as such is a key element in food production. However, floral scents that pollinating insects rely on to locate host plants may be altered by atmospheric oxidants, such as ozone, potentially making these cues less attractive or unrecognizable to foraging insects and decreasing pollinator efficacy. We demonstrate that levels of tropospheric ozone commonly found in many rural areas are sufficient to disrupt the innate attraction of the tobacco hawkmoth Manduca sexta to the odor of one of its preferred flowers, Nicotiana alata. However, we further find that visual navigation together with associative learning can offset this disruption. Foraging moths that initially find an ozone-altered floral scent unattractive can target an artificial flower using visual cues and associate the ozone-altered floral blend with a nectar reward. The ability to learn ozone-altered floral odors may enable pollinators to maintain communication with their co-evolutionary partners and reduce the negative impacts that anthropogenically elevated oxidants may have on plant-pollinator systems.


Asunto(s)
Conducta Animal/efectos de los fármacos , Flores/fisiología , Manduca/fisiología , Nicotiana/fisiología , Percepción Olfatoria/efectos de los fármacos , Ozono/toxicidad , Animales , Flores/química , Flores/efectos de los fármacos , Odorantes/análisis , Polinización , Nicotiana/efectos de los fármacos
12.
Proc Natl Acad Sci U S A ; 114(46): E9962-E9971, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29087946

RESUMEN

In Drosophila melanogaster, the sex pheromone produced by males, cis-vaccenyl acetate (cVA), evokes a stereotypic gender-specific behavior in both males and females. As Drosophila adults feed, mate, and oviposit on food, they perceive the pheromone as a blend against a background of food odors. Previous studies have reported that food odors enhance flies' behavioral response to cVA, specifically in virgin females. However, how and where the different olfactory inputs interact has so far remained unknown. In this study, we elucidated the neuronal mechanism underlying the response at an anatomical, functional, and behavioral level. Our data show that in virgin females cVA and the complex food odor vinegar evoke a synergistic response in the cVA-responsive glomerulus DA1. This synergism, however, does not appear at the input level of the glomerulus, but is restricted to the projection neuron level only. Notably, it is abolished by a mutation in gap junctions in projection neurons and is found to be mediated by electrical synapses between excitatory local interneurons and projection neurons. As a behavioral consequence, we demonstrate that virgin females in the presence of vinegar become receptive more rapidly to courting males, while male courtship is not affected. Altogether, our results suggest that lateral excitation via gap junctions modulates odor tuning in the antennal lobe and drives synergistic interactions between two ecologically relevant odors, representing food and sex.


Asunto(s)
Conducta Animal/efectos de los fármacos , Drosophila melanogaster/fisiología , Sinapsis Eléctricas/efectos de los fármacos , Sinapsis Eléctricas/fisiología , Alimentos , Odorantes , Receptores Odorantes/metabolismo , Atractivos Sexuales/farmacología , Acetatos/farmacología , Ácido Acético/química , Alimentación Animal , Animales , Cortejo , Proteínas de Drosophila/metabolismo , Sinergismo Farmacológico , Femenino , Regulación de la Expresión Génica , Masculino , Ácidos Oléicos/farmacología , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/metabolismo , Feromonas/farmacología , Receptores de Superficie Celular/metabolismo , Células Receptoras Sensoriales/metabolismo , Factores Sexuales , Olfato/fisiología
13.
Ecology ; 100(1): e02553, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30411786

RESUMEN

Flower signaling and orientation are key characteristics that determine a flower's pollinator guild. However, many flowers actively move during their daily cycle, changing both their detectability and accessibility to pollinators. The flowers of the wild tobacco Nicotiana attenuata orientate their corolla upward at sunset and downward after sunrise. Here, we investigated the effect of different flower orientations on a major pollinator of N. attenuata, the hawkmoth Manduca sexta. We found that although flower orientation influenced the flight altitude of the moth in respect to the flower, it did not alter the moth's final flower choice. These behavioral observations were consistent with the finding that orientation did not systematically change the spatial distribution of floral volatiles, which are major attractants for the moths. Moreover, hawkmoths invested the same amount of time into probing flowers at different orientations, even though they were only able to feed and gather pollen from horizontally and upward-oriented flowers, but not from downward-facing flowers. The orientation of the flower was hence crucial for a successful interaction between N. attenuata and its hawkmoth pollinator. Additionally, we also investigated potential adverse effects of exposing flowers at different orientations to natural daylight levels, finding that anther temperature of upward-oriented flowers was more than 7°C higher than for downward-oriented flowers. This increase in temperature likely caused the significantly reduced germination success that was observed for pollen grains from upward-oriented flowers in comparison to those of downward and horizontally oriented flowers. These results highlight the importance of flower reorientation to balance pollen protection and a successful interaction of the plant with its insect pollinators by maintaining the association between flower volatiles and flower accessibility to the pollinator.


Asunto(s)
Manduca , Mariposas Nocturnas , Animales , Flores , Polen , Polinización
14.
Chem Senses ; 44(9): 673-682, 2019 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-31504297

RESUMEN

Insect odorant receptors (ORs) show a limited functional expression in various heterologous expression systems including insect and mammalian cells. This may be in part due to the absence of key components driving the release of these proteins from the endoplasmic reticulum and directing them to the plasma membrane. In order to mitigate this problem, we took advantage of small export signals within the human HCN1 and Rhodopsin that have been shown to promote protein release from the endoplasmic reticulum and the trafficking of post-Golgi vesicles, respectively. Moreover, we designed a new vector based on a bidirectional expression cassette to drive the functional expression of the insect odorant receptor coreceptor (Orco) and an odor-binding OR, simultaneously. We show that this new method can be used to reliably express insect ORs in HEK293 cells via transient transfection and that is highly suitable for downstream applications using automated and high-throughput imaging platforms.


Asunto(s)
Proteínas de Drosophila/metabolismo , Receptores Odorantes/metabolismo , Animales , Membrana Celular/metabolismo , Proteínas de Drosophila/agonistas , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Células HEK293 , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Pentanoles/farmacología , Plásmidos/genética , Plásmidos/metabolismo , Canales de Potasio/genética , Transporte de Proteínas/efectos de los fármacos , Receptores Odorantes/agonistas , Receptores Odorantes/genética , Rodopsina/genética , Transfección
15.
J Exp Biol ; 222(Pt 5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30679242

RESUMEN

It has been shown that gut microbes are very important for the behavior and development of Drosophila, as the beneficial microbes are involved in the identification of suitable feeding and egg-laying locations. However, in what way these associated gut microbes influence the fitness-related behaviors of Drosophila melanogaster remains unclear. Here, we show that D. melanogaster exhibits different behavioral preferences towards gut microbes. Both adults and larvae were attracted by the volatile compounds of Saccharomyces cerevisiae and Lactobacillus plantarum, but were repelled by Acetobacter malorum in behavioral assays, indicating that an olfactory mechanism is involved in these preference behaviors. While the attraction to yeast was governed by olfactory sensory neurons expressing the odorant co-receptor Orco, the observed behaviors towards the other microbes were retained in flies lacking this co-receptor. By experimentally manipulating the microbiota of the flies, we found that flies did not strive for a diverse microbiome by increasing their preference towards gut microbes that they had not experienced previously. Instead, in some cases, the flies even increased preference for the microbes on which they were reared. Furthermore, exposing Drosophila larvae to all three microbes promoted Drosophila development, while exposure to only S. cerevisiae and A. malorum resulted in the development of larger ovaries and in increased egg numbers in an oviposition assay. Thus, our study provides a better understanding of how gut microbes affect insect behavior and development, and offers an ecological rationale for preferences of flies for different microbes in their natural environment.


Asunto(s)
Quimiotaxis , Drosophila melanogaster/fisiología , Microbioma Gastrointestinal/fisiología , Olfato , Compuestos Orgánicos Volátiles/metabolismo , Acetobacter/fisiología , Animales , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/microbiología , Femenino , Lactobacillus plantarum/fisiología , Larva/crecimiento & desarrollo , Larva/microbiología , Larva/fisiología , Masculino , Saccharomyces cerevisiae/fisiología
16.
J Exp Biol ; 222(Pt 12)2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31160428

RESUMEN

The terrestrial and omnivorous robber crab Birgus latro inhabits islands of the Indian Ocean and the Pacific Ocean. The animals live solitarily but occasionally gather at freshly opened coconuts or fructiferous arenga palms. By analyzing volatiles of coconuts and arenga fruit, we identified five compounds, including acetoin, which are present in both food sources. In a behavioral screen performed in the crabs' habitat, a beach on Christmas Island, we found that of 15 tested fruit compounds, acetoin was the only volatile eliciting significant attraction. Hence, acetoin might play a key role in governing the crabs' aggregation behavior at both food sources.


Asunto(s)
Acetoína/metabolismo , Anomuros/fisiología , Odorantes , Animales , Conducta Alimentaria , Islas del Oceano Índico
18.
J Chem Ecol ; 45(7): 626-637, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31257561

RESUMEN

Since the first reports of damage by Drosophila suzukii, the spotted-wing Drosophila (SWD), over a decade ago in Europe, widespread efforts have been made to understand both the ecology and the evolution of this insect pest, especially due to its phylogenetic proximity to one of the original model organisms, D. melanogaster. In addition, researchers have sought to find economically viable solutions for the monitoring and management of this agricultural pest, which has now swept across much of Europe, North America and Asia. In a new direction of study, we present an investigation of plant-based chemistry, where we search for natural compounds that are structurally similar to known olfactory cues from parasitoid wasps that in turn are well-described ovipositional avoidance cues for many Drosophila species. Here we test 11 plant species across two plant genera, Nepeta and Actinidia, and while we find iridoid compounds in both, only those odorants from Actinidia are noted to be detected by the insect antenna, and in addition, found to be behaviorally active. Moreover, the Actinidia extracts resulted in oviposition avoidance when they were added to fruit samples in the laboratory. Thus we propose the possible efficacy of these plants or their extracted chemistry as a novel means for establishing a cost-effective integrated pest management strategy towards the control of this pest fly.


Asunto(s)
Actinidia/química , Productos Biológicos/química , Drosophila/fisiología , Control de Insectos/métodos , Nepeta/química , Actinidia/metabolismo , Actinidia/parasitología , Animales , Productos Biológicos/farmacología , Productos Agrícolas , Drosophila/efectos de los fármacos , Drosophila/crecimiento & desarrollo , Cromatografía de Gases y Espectrometría de Masas , Nepeta/metabolismo , Nepeta/parasitología , Oviposición/efectos de los fármacos , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Hojas de la Planta/parasitología
19.
PLoS Biol ; 13(12): e1002318, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26674493

RESUMEN

Detecting danger is one of the foremost tasks for a neural system. Larval parasitoids constitute clear danger to Drosophila, as up to 80% of fly larvae become parasitized in nature. We show that Drosophila melanogaster larvae and adults avoid sites smelling of the main parasitoid enemies, Leptopilina wasps. This avoidance is mediated via a highly specific olfactory sensory neuron (OSN) type. While the larval OSN expresses the olfactory receptor Or49a and is tuned to the Leptopilina odor iridomyrmecin, the adult expresses both Or49a and Or85f and in addition detects the wasp odors actinidine and nepetalactol. The information is transferred via projection neurons to a specific part of the lateral horn known to be involved in mediating avoidance. Drosophila has thus developed a dedicated circuit to detect a life-threatening enemy based on the smell of its semiochemicals. Such an enemy-detecting olfactory circuit has earlier only been characterized in mice and nematodes.


Asunto(s)
Proteínas de Drosophila/agonistas , Drosophila melanogaster/efectos de los fármacos , Proteínas del Tejido Nervioso/agonistas , Bulbo Olfatorio/efectos de los fármacos , Receptores Odorantes/agonistas , Células Receptoras Sensoriales/efectos de los fármacos , Avispas/metabolismo , Alcaloides/farmacología , Animales , Animales Modificados Genéticamente , Conducta Animal/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/parasitología , Drosophila melanogaster/fisiología , Femenino , Iridoides/farmacología , Larva/efectos de los fármacos , Larva/genética , Larva/parasitología , Larva/fisiología , Proteínas Mutantes/agonistas , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Odorantes , Bulbo Olfatorio/metabolismo , Oviposición , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/metabolismo , Piridinas/farmacología , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Células Receptoras Sensoriales/metabolismo , Transducción de Señal , Terpenos/farmacología
20.
Proc Natl Acad Sci U S A ; 112(21): E2829-35, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25964351

RESUMEN

Intraspecific olfactory signals known as pheromones play important roles in insect mating systems. In the model Drosophila melanogaster, a key part of the pheromone-detecting system has remained enigmatic through many years of research in terms of both its behavioral significance and its activating ligands. Here we show that Or47b-and Or88a-expressing olfactory sensory neurons (OSNs) detect the fly-produced odorants methyl laurate (ML), methyl myristate, and methyl palmitate. Fruitless (fru(M))-positive Or47b-expressing OSNs detect ML exclusively, and Or47b- and Or47b-expressing OSNs are required for optimal male copulation behavior. In addition, activation of Or47b-expressing OSNs in the male is sufficient to provide a competitive mating advantage. We further find that the vigorous male courtship displayed toward oenocyte-less flies is attributed to an oenocyte-independent sustained production of the Or47b ligand, ML. In addition, we reveal that Or88a-expressing OSNs respond to all three compounds, and that these neurons are necessary and sufficient for attraction behavior in both males and females. Beyond the OSN level, information regarding the three fly odorants is transferred from the antennal lobe to higher brain centers in two dedicated neural lines. Finally, we find that both Or47b- and Or88a-based systems and their ligands are remarkably conserved over a number of drosophilid species. Taken together, our results close a significant gap in the understanding of the olfactory background to Drosophila mating and attraction behavior; while reproductive isolation barriers between species are created mainly by species-specific signals, the mating enhancing signal in several Drosophila species is conserved.


Asunto(s)
Copulación/fisiología , Drosophila melanogaster/fisiología , Atractivos Sexuales/fisiología , Olfato/fisiología , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Femenino , Genes de Insecto , Hidrocarburos/química , Hidrocarburos/metabolismo , Lauratos/metabolismo , Masculino , Mutación , Ácidos Mirísticos/metabolismo , Odorantes , Neuronas Receptoras Olfatorias/fisiología , Palmitatos/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/fisiología , Atractivos Sexuales/química , Conducta Sexual Animal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA