RESUMEN
To identify modifier loci underlying variation in body mass index (BMI) in persons with cystic fibrosis (pwCF), we performed a genome-wide association study (GWAS). Utilizing longitudinal height and weight data, along with demographic information and covariates from 4,393 pwCF, we calculated AvgBMIz representing the average of per-quarter BMI Z scores. The GWAS incorporated 9.8M single nucleotide polymorphisms (SNPs) with a minor allele frequency (MAF) > 0.005 extracted from whole-genome sequencing (WGS) of each study subject. We observed genome-wide significant association with a variant in FTO (FaT mass and Obesity-associated gene; rs28567725; p value = 1.21e-08; MAF = 0.41, ß = 0.106; n = 4,393 individuals) and a variant within ADAMTS5 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 5; rs162500; p value = 2.11e-10; MAF = 0.005, ß = -0.768; n = 4,085 pancreatic-insufficient individuals). Notably, BMI-associated variants in ADAMTS5 occur on a haplotype that is much more common in African (AFR, MAF = 0.183) than European (EUR, MAF = 0.006) populations (1000 Genomes project). A polygenic risk score (PRS) calculated using 924 SNPs (excluding 17 in FTO) showed significant association with AvgBMIz (p value = 2.2e-16; r2 = 0.03). Association between variants in FTO and the PRS correlation reveals similarities in the genetic architecture of BMI in CF and the general population. Inclusion of Black individuals in whom the single-gene disorder CF is much less common but genomic diversity is greater facilitated detection of association with variants that are in LD with functional SNPs in ADAMTS5. Our results illustrate the importance of population diversity, particularly when attempting to identify variants that manifest only under certain physiologic conditions.
Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Índice de Masa Corporal , Fibrosis Quística , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Fibrosis Quística/genética , Masculino , Femenino , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Adulto , Proteína ADAMTS5/genética , Niño , Adolescente , Frecuencia de los Genes , Haplotipos , Predisposición Genética a la Enfermedad , Adulto Joven , Obesidad/genética , Genes ModificadoresRESUMEN
Since genotype imputation was introduced, researchers have been relying on the estimated imputation quality from imputation software to perform post-imputation quality control (QC). However, this quality estimate (denoted as Rsq) performs less well for lower-frequency variants. We recently published MagicalRsq, a machine-learning-based imputation quality calibration, which leverages additional typed markers from the same cohort and outperforms Rsq as a QC metric. In this work, we extended the original MagicalRsq to allow cross-cohort model training and named the new model MagicalRsq-X. We removed the cohort-specific estimated minor allele frequency and included linkage disequilibrium scores and recombination rates as additional features. Leveraging whole-genome sequencing data from TOPMed, specifically participants in the BioMe, JHS, WHI, and MESA studies, we performed comprehensive cross-cohort evaluations for predominantly European and African ancestral individuals based on their inferred global ancestry with the 1000 Genomes and Human Genome Diversity Project data as reference. Our results suggest MagicalRsq-X outperforms Rsq in almost every setting, with 7.3%-14.4% improvement in squared Pearson correlation with true R2, corresponding to 85-218 K variant gains. We further developed a metric to quantify the genetic distances of a target cohort relative to a reference cohort and showed that such metric largely explained the performance of MagicalRsq-X models. Finally, we found MagicalRsq-X saved up to 53 known genome-wide significant variants in one of the largest blood cell trait GWASs that would be missed using the original Rsq for QC. In conclusion, MagicalRsq-X shows superiority for post-imputation QC and benefits genetic studies by distinguishing well and poorly imputed lower-frequency variants.
Asunto(s)
Frecuencia de los Genes , Genotipo , Polimorfismo de Nucleótido Simple , Programas Informáticos , Humanos , Estudios de Cohortes , Desequilibrio de Ligamiento , Estudio de Asociación del Genoma Completo/métodos , Genoma Humano , Control de Calidad , Aprendizaje Automático , Secuenciación Completa del Genoma/normas , Secuenciación Completa del Genoma/métodosRESUMEN
Individuals with cystic fibrosis (CF) develop complications of the gastrointestinal tract influenced by genetic variants outside of CFTR. Cystic fibrosis-related diabetes (CFRD) is a distinct form of diabetes with a variable age of onset that occurs frequently in individuals with CF, while meconium ileus (MI) is a severe neonatal intestinal obstruction affecting â¼20% of newborns with CF. CFRD and MI are slightly correlated traits with previous evidence of overlap in their genetic architectures. To better understand the genetic commonality between CFRD and MI, we used whole-genome-sequencing data from the CF Genome Project to perform genome-wide association. These analyses revealed variants at 11 loci (6 not previously identified) that associated with MI and at 12 loci (5 not previously identified) that associated with CFRD. Of these, variants at SLC26A9, CEBPB, and PRSS1 associated with both traits; variants at SLC26A9 and CEBPB increased risk for both traits, while variants at PRSS1, the higher-risk alleles for CFRD, conferred lower risk for MI. Furthermore, common and rare variants within the SLC26A9 locus associated with MI only or CFRD only. As expected, different loci modify risk of CFRD and MI; however, a subset exhibit pleiotropic effects indicating etiologic and mechanistic overlap between these two otherwise distinct complications of CF.
Asunto(s)
Fibrosis Quística , Diabetes Mellitus , Enfermedades del Recién Nacido , Obstrucción Intestinal , Fibrosis Quística/complicaciones , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Diabetes Mellitus/genética , Estudio de Asociación del Genoma Completo , Humanos , Recién Nacido , Obstrucción Intestinal/complicaciones , Obstrucción Intestinal/genéticaRESUMEN
Whole-genome sequencing (WGS) is the gold standard for fully characterizing genetic variation but is still prohibitively expensive for large samples. To reduce costs, many studies sequence only a subset of individuals or genomic regions, and genotype imputation is used to infer genotypes for the remaining individuals or regions without sequencing data. However, not all variants can be well imputed, and the current state-of-the-art imputation quality metric, denoted as standard Rsq, is poorly calibrated for lower-frequency variants. Here, we propose MagicalRsq, a machine-learning-based method that integrates variant-level imputation and population genetics statistics, to provide a better calibrated imputation quality metric. Leveraging WGS data from the Cystic Fibrosis Genome Project (CFGP), and whole-exome sequence data from UK BioBank (UKB), we performed comprehensive experiments to evaluate the performance of MagicalRsq compared to standard Rsq for partially sequenced studies. We found that MagicalRsq aligns better with true R2 than standard Rsq in almost every situation evaluated, for both European and African ancestry samples. For example, when applying models trained from 1,992 CFGP sequenced samples to an independent 3,103 samples with no sequencing but TOPMed imputation from array genotypes, MagicalRsq, compared to standard Rsq, achieved net gains of 1.4 million rare, 117k low-frequency, and 18k common variants, where net gains were gained numbers of correctly distinguished variants by MagicalRsq over standard Rsq. MagicalRsq can serve as an improved post-imputation quality metric and will benefit downstream analysis by better distinguishing well-imputed variants from those poorly imputed. MagicalRsq is freely available on GitHub.
Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple/genética , Calibración , Genotipo , Aprendizaje AutomáticoRESUMEN
BACKGROUND AND AIMS: It is not known why severe cystic fibrosis (CF) liver disease (CFLD) with portal hypertension occurs in only ~7% of people with CF. We aimed to identify genetic modifiers for severe CFLD to improve understanding of disease mechanisms. APPROACH AND RESULTS: Whole-genome sequencing was available in 4082 people with CF with pancreatic insufficiency (n = 516 with severe CFLD; n = 3566 without CFLD). We tested ~15.9 million single nucleotide polymorphisms (SNPs) for association with severe CFLD versus no-CFLD, using pre-modulator clinical phenotypes including (1) genetic variant ( SERPINA1 ; Z allele) previously associated with severe CFLD; (2) candidate SNPs (n = 205) associated with non-CF liver diseases; (3) genome-wide association study of common/rare SNPs; (4) transcriptome-wide association; and (5) gene-level and pathway analyses. The Z allele was significantly associated with severe CFLD ( p = 1.1 × 10 -4 ). No significant candidate SNPs were identified. A genome-wide association study identified genome-wide significant SNPs in 2 loci and 2 suggestive loci. These 4 loci contained genes [significant, PKD1 ( p = 8.05 × 10 -10 ) and FNBP1 ( p = 4.74 × 10 -9 ); suggestive, DUSP6 ( p = 1.51 × 10 -7 ) and ANKUB1 ( p = 4.69 × 10 -7 )] relevant to severe CFLD pathophysiology. The transcriptome-wide association identified 3 genes [ CXCR1 ( p = 1.01 × 10 -6 ) , AAMP ( p = 1.07 × 10 -6 ), and TRBV24 ( p = 1.23 × 10 -5 )] involved in hepatic inflammation and innate immunity. Gene-ranked analyses identified pathways enriched in genes linked to multiple liver pathologies. CONCLUSION: These results identify loci/genes associated with severe CFLD that point to disease mechanisms involving hepatic fibrosis, inflammation, innate immune function, vascular pathology, intracellular signaling, actin cytoskeleton and tight junction integrity and mechanisms of hepatic steatosis and insulin resistance. These discoveries will facilitate mechanistic studies and the development of therapeutics for severe CFLD.
Asunto(s)
Fibrosis Quística , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Fibrosis Quística/genética , Fibrosis Quística/complicaciones , Femenino , Masculino , Adulto , Índice de Severidad de la Enfermedad , Hepatopatías/genética , Niño , Adolescente , alfa 1-Antitripsina/genética , Adulto Joven , Hipertensión Portal/genética , Secuenciación Completa del GenomaRESUMEN
Rationale: Bronchiectasis is a pathological dilatation of the bronchi in the respiratory airways associated with environmental or genetic causes (e.g., cystic fibrosis, primary ciliary dyskinesia, and primary immunodeficiency disorders), but most cases remain idiopathic. Objectives: To identify novel genetic defects in unsolved cases of bronchiectasis presenting with severe rhinosinusitis, nasal polyposis, and pulmonary Pseudomonas aeruginosa infection. Methods: DNA was analyzed by next-generation or targeted Sanger sequencing. RNA was analyzed by quantitative PCR and single-cell RNA sequencing. Patient-derived cells, cell cultures, and secretions (mucus, saliva, seminal fluid) were analyzed by Western blotting and immunofluorescence microscopy, and mucociliary activity was measured. Blood serum was analyzed by electrochemiluminescence immunoassay. Protein structure and proteomic analyses were used to assess the impact of a disease-causing founder variant. Measurements and Main Results: We identified biallelic pathogenic variants in WAP four-disulfide core domain 2 (WFDC2) in 11 individuals from 10 unrelated families originating from the United States, Europe, Asia, and Africa. Expression of WFDC2 was detected predominantly in secretory cells of control airway epithelium and also in submucosal glands. We demonstrate that WFDC2 is below the limit of detection in blood serum and hardly detectable in samples of saliva, seminal fluid, and airway surface liquid from WFDC2-deficient individuals. Computer simulations and deglycosylation assays indicate that the disease-causing founder variant p.Cys49Arg structurally hampers glycosylation and, thus, secretion of mature WFDC2. Conclusions: WFDC2 dysfunction defines a novel molecular etiology of bronchiectasis characterized by the deficiency of a secreted component of the airways. A commercially available blood test combined with genetic testing allows its diagnosis.
Asunto(s)
Bronquiectasia , Pólipos Nasales , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Bronquiectasia/genética , Bronquiectasia/fisiopatología , Pólipos Nasales/genética , Proteína 2 de Dominio del Núcleo de Cuatro Disulfuros WAPRESUMEN
Mutations in SPAG1, a dynein axonemal assembly factor (DNAAF) that facilitates the assembly of dynein arms in the cytoplasm before their transport into the cilium, result in primary ciliary dyskinesia (PCD), a genetically heterogenous disorder characterized by chronic oto-sino-pulmonary disease, infertility and laterality defects. To further elucidate the role of SPAG1 in dynein assembly, we examined its expression, interactions and ciliary defects in control and PCD human airway epithelia. Immunoprecipitations showed that SPAG1 interacts with multiple DNAAFs, dynein chains and canonical components of the R2TP complex. Protein levels of dynein heavy chains (DHCs) and interactions between DHCs and dynein intermediate chains (DICs) were reduced in SPAG1 mutants. We also identified a previously uncharacterized 60â kDa SPAG1 isoform, through examination of PCD subjects with an atypical ultrastructural defect for SPAG1 variants, that can partially compensate for the absence of full-length SPAG1 to assemble a reduced number of outer dynein arms. In summary, our data show that SPAG1 is necessary for axonemal dynein arm assembly by scaffolding R2TP-like complexes composed of several DNAAFs that facilitate the folding and/or binding of the DHCs to the DIC complex.
Asunto(s)
Dineínas Axonemales , Axonema , Antígenos de Superficie/metabolismo , Dineínas Axonemales/genética , Dineínas Axonemales/metabolismo , Axonema/metabolismo , Cilios/metabolismo , Dineínas/genética , Dineínas/metabolismo , Proteínas de Unión al GTP/metabolismo , Humanos , Mutación/genética , Sistema Respiratorio/metabolismoRESUMEN
Variation in the non-coding genome represents an understudied mechanism of disease and it remains challenging to predict if single nucleotide variants, small insertions and deletions, or structural variants in non-coding genomic regions will be detrimental. Our approach using complementary RNA-seq and targeted long-read DNA sequencing can prioritize identification of non-coding variants that lead to disease via alteration of gene splicing or expression. We have identified a patient with primary ciliary dyskinesia with a pathogenic coding variant on one allele of the SPAG1 gene, while the second allele appears normal by whole exome sequencing despite an autosomal recessive inheritance pattern. RNA sequencing revealed reduced SPAG1 transcript levels and exclusive allele specific expression of the known pathogenic allele, suggesting the presence of a non-coding variant on the second allele that impacts transcription. Targeted long-read DNA sequencing identified a heterozygous 3 kilobase deletion of the 5' untranslated region of SPAG1, overlapping the promoter and first non-coding exon. This non-coding deletion was missed by whole exome sequencing and gene-specific deletion/duplication analysis, highlighting the importance of investigating the non-coding genome in patients with "missing" disease-causing variation. This paradigm demonstrates the utility of both RNA and long-read DNA sequencing in identifying pathogenic non-coding variants in patients with unexplained genetic disease.
RESUMEN
Rationale: Lung disease is the major cause of morbidity and mortality in persons with cystic fibrosis (pwCF). Variability in CF lung disease has substantial non-CFTR (CF transmembrane conductance regulator) genetic influence. Identification of genetic modifiers has prognostic and therapeutic importance. Objectives: Identify genetic modifier loci and genes/pathways associated with pulmonary disease severity. Methods: Whole-genome sequencing data on 4,248 unique pwCF with pancreatic insufficiency and lung function measures were combined with imputed genotypes from an additional 3,592 patients with pancreatic insufficiency from the United States, Canada, and France. This report describes association of approximately 15.9 million SNPs using the quantitative Kulich normal residual mortality-adjusted (KNoRMA) lung disease phenotype in 7,840 pwCF using premodulator lung function data. Measurements and Main Results: Testing included common and rare SNPs, transcriptome-wide association, gene-level, and pathway analyses. Pathway analyses identified novel associations with genes that have key roles in organ development, and we hypothesize that these genes may relate to dysanapsis and/or variability in lung repair. Results confirmed and extended previous genome-wide association study findings. These whole-genome sequencing data provide finely mapped genetic information to support mechanistic studies. No novel primary associations with common single variants or rare variants were found. Multilocus effects at chr5p13 (SLC9A3/CEP72) and chr11p13 (EHF/APIP) were identified. Variant effect size estimates at associated loci were consistently ordered across the cohorts, indicating possible age or birth cohort effects. Conclusions: This premodulator genomic, transcriptomic, and pathway association study of 7,840 pwCF will facilitate mechanistic and postmodulator genetic studies and the development of novel therapeutics for CF lung disease.
Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/genética , Estudio de Asociación del Genoma Completo/métodos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Gravedad del Paciente , Pulmón , Proteínas Asociadas a Microtúbulos/genéticaRESUMEN
Primary ciliary dyskinesia (PCD) is characterized by chronic airway disease, reduced fertility, and randomization of the left/right body axis. It is caused by defects of motile cilia and sperm flagella. We screened a cohort of affected individuals that lack an obvious axonemal defect for pathogenic variants using whole exome capture, next generation sequencing, and bioinformatic analysis assuming an autosomal recessive trait. We identified one subject with an apparently homozygous nonsense variant [(c.1762C>T), p.(Arg588*)] in the uncharacterized CFAP57 gene. Interestingly, the variant results in the skipping of exon 11 (58 amino acids), which may be due to disruption of an exonic splicing enhancer. In normal human nasal epithelial cells, CFAP57 localizes throughout the ciliary axoneme. Nasal cells from the PCD patient express a shorter, mutant version of CFAP57 and the protein is not incorporated into the axoneme. The missing 58 amino acids include portions of WD repeats that may be important for loading onto the intraflagellar transport (IFT) complexes for transport or docking onto the axoneme. A reduced beat frequency and an alteration in ciliary waveform was observed. Knockdown of CFAP57 in human tracheobronchial epithelial cells (hTECs) recapitulates these findings. Phylogenetic analysis showed that CFAP57 is highly conserved in organisms that assemble motile cilia. CFAP57 is allelic with the BOP2/IDA8/FAP57 gene identified previously in Chlamydomonas reinhardtii. Two independent, insertional fap57 Chlamydomonas mutant strains show reduced swimming velocity and altered waveforms. Tandem mass tag (TMT) mass spectroscopy shows that FAP57 is missing, and the "g" inner dyneins (DHC7 and DHC3) and the "d" inner dynein (DHC2) are reduced, but the FAP57 paralog FBB7 is increased. Together, our data identify a homozygous variant in CFAP57 that causes PCD that is likely due to a defect in the inner dynein arm assembly process.
Asunto(s)
Axonema/metabolismo , Trastornos de la Motilidad Ciliar/genética , Codón sin Sentido , Dineínas/metabolismo , Proteínas/genética , Células 3T3 , Adulto , Animales , Axonema/fisiología , Células Cultivadas , Chlamydomonas reinhardtii , Cilios/metabolismo , Cilios/fisiología , Trastornos de la Motilidad Ciliar/patología , Secuencia Conservada , Humanos , Masculino , Ratones , Proteínas Asociadas a Microtúbulos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas/química , Proteínas/metabolismo , Mucosa Respiratoria/metabolismoRESUMEN
Primary ciliary dyskinesia (PCD) is a genetic disorder in which impaired ciliary function leads to chronic airway disease. Exome sequencing of a PCD subject identified an apparent homozygous frameshift variant, c.887_890delTAAG (p.Val296Glyfs∗13), in exon 5; this frameshift introduces a stop codon in amino acid 308 of the growth arrest-specific protein 2-like 2 (GAS2L2). Further genetic screening of unrelated PCD subjects identified a second proband with a compound heterozygous variant carrying the identical frameshift variant and a large deletion (c.867_∗343+1207del; p.?) starting in exon 5. Both individuals had clinical features of PCD but normal ciliary axoneme structure. In this research, using human nasal cells, mouse models, and X.laevis embryos, we show that GAS2L2 is abundant at the apical surface of ciliated cells, where it localizes with basal bodies, basal feet, rootlets, and actin filaments. Cultured GAS2L2-deficient nasal epithelial cells from one of the affected individuals showed defects in ciliary orientation and had an asynchronous and hyperkinetic (GAS2L2-deficient = 19.8 Hz versus control = 15.8 Hz) ciliary-beat pattern. These results were recapitulated in Gas2l2-/- mouse tracheal epithelial cell (mTEC) cultures and in X. laevis embryos treated with Gas2l2 morpholinos. In mice, the absence of Gas2l2 caused neonatal death, and the conditional deletion of Gas2l2 impaired mucociliary clearance (MCC) and led to mucus accumulation. These results show that a pathogenic variant in GAS2L2 causes a genetic defect in ciliary orientation and impairs MCC and results in PCD.
Asunto(s)
Cilios/patología , Trastornos de la Motilidad Ciliar/genética , Trastornos de la Motilidad Ciliar/fisiopatología , Proteínas de Microfilamentos/deficiencia , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas de Xenopus/deficiencia , Animales , Trastornos de la Motilidad Ciliar/patología , Modelos Animales de Enfermedad , Exones/genética , Femenino , Eliminación de Gen , Genes Letales , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas Asociadas a Microtúbulos/genética , Fenotipo , Rotación , Xenopus/embriología , Xenopus/genética , Proteínas de Xenopus/genéticaRESUMEN
Hydrocephalus is one of the most prevalent form of developmental central nervous system (CNS) malformations. Cerebrospinal fluid (CSF) flow depends on both heartbeat and body movement. Furthermore, it has been shown that CSF flow within and across brain ventricles depends on cilia motility of the ependymal cells lining the brain ventricles, which play a crucial role to maintain patency of the narrow sites of CSF passage during brain formation in mice. Using whole-exome and whole-genome sequencing, we identified an autosomal-dominant cause of a distinct motile ciliopathy related to defective ciliogenesis of the ependymal cilia in six individuals. Heterozygous de novo mutations in FOXJ1, which encodes a well-known member of the forkhead transcription factors important for ciliogenesis of motile cilia, cause a motile ciliopathy that is characterized by hydrocephalus internus, chronic destructive airway disease, and randomization of left/right body asymmetry. Mutant respiratory epithelial cells are unable to generate a fluid flow and exhibit a reduced number of cilia per cell, as documented by high-speed video microscopy (HVMA), transmission electron microscopy (TEM), and immunofluorescence analysis (IF). TEM and IF demonstrate mislocalized basal bodies. In line with this finding, the focal adhesion protein PTK2 displays aberrant localization in the cytoplasm of the mutant respiratory epithelial cells.
Asunto(s)
Ventrículos Cerebrales/patología , Ciliopatías/genética , Factores de Transcripción Forkhead/genética , Hidrocefalia/genética , Mutación/genética , Cuerpos Basales/patología , Cilios/genética , Cilios/patología , Ciliopatías/patología , Epéndimo/patología , Células Epiteliales/patología , Humanos , Hidrocefalia/patologíaRESUMEN
Cystic Fibrosis (CF) exhibits morbidity in several organs, including progressive lung disease in all patients and intestinal obstruction at birth (meconium ileus) in ~15%. Individuals with the same causal CFTR mutations show variable disease presentation which is partly attributed to modifier genes. With >6,500 participants from the International CF Gene Modifier Consortium, genome-wide association investigation identified a new modifier locus for meconium ileus encompassing ATP12A on chromosome 13 (min p = 3.83x10(-10)); replicated loci encompassing SLC6A14 on chromosome X and SLC26A9 on chromosome 1, (min p<2.2x10(-16), 2.81x10(-11), respectively); and replicated a suggestive locus on chromosome 7 near PRSS1 (min p = 2.55x10(-7)). PRSS1 is exclusively expressed in the exocrine pancreas and was previously associated with non-CF pancreatitis with functional characterization demonstrating impact on PRSS1 gene expression. We thus asked whether the other meconium ileus modifier loci impact gene expression and in which organ. We developed and applied a colocalization framework called the Simple Sum (SS) that integrates regulatory and genetic association information, and also contrasts colocalization evidence across tissues or genes. The associated modifier loci colocalized with expression quantitative trait loci (eQTLs) for ATP12A (p = 3.35x10(-8)), SLC6A14 (p = 1.12x10(-10)) and SLC26A9 (p = 4.48x10(-5)) in the pancreas, even though meconium ileus manifests in the intestine. The meconium ileus susceptibility locus on chromosome X appeared shifted in location from a previously identified locus for CF lung disease severity. Using the SS we integrated the lung disease association locus with eQTLs from nasal epithelia of 63 CF participants and demonstrated evidence of colocalization with airway-specific regulation of SLC6A14 (p = 2.3x10(-4)). Cystic Fibrosis is realizing the promise of personalized medicine, and identification of the contributing organ and understanding of tissue specificity for a gene modifier is essential for the next phase of personalizing therapeutic strategies.
Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/genética , Antiportadores/genética , Fibrosis Quística/genética , Perfilación de la Expresión Génica/métodos , Estudio de Asociación del Genoma Completo/métodos , ATPasa Intercambiadora de Hidrógeno-Potásio/genética , Transportadores de Sulfato/genética , Tripsina/genética , Sistemas de Transporte de Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Antiportadores/metabolismo , Fibrosis Quística/metabolismo , Femenino , Regulación de la Expresión Génica , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Humanos , Pulmón/metabolismo , Masculino , Especificidad de Órganos , Páncreas Exocrino/metabolismo , Transportadores de Sulfato/metabolismo , Tripsina/metabolismoRESUMEN
Primary ciliary dyskinesia (PCD) is a rare lung disease caused by mutations that impair the function of motile cilia, resulting in chronic upper and lower respiratory disease, reduced fertility, and a high prevalence of situs abnormalities. The disease is genetically and phenotypically heterogeneous, with causative mutations in > 50 genes identified, and clinical phenotypes ranging from mild to severe. Absence of ODAD1 (CCDC114), a component of the outer dynein arm docking complex, results in a failure to assemble outer dynein arms (ODAs), mostly immotile cilia, and a typical PCD phenotype. We identified a female (now 34 years old) with an unusually mild clinical phenotype who has a homozygous non-canonical splice mutation (c.1502+5G>A) in ODAD1. To investigate the mechanism for the unusual phenotype, we performed molecular and functional studies of cultured nasal epithelial cells. We demonstrate that this splice mutation results in the expression of a truncated protein that is attached to the axoneme, indicating that the mutant protein retains partial function. This allows for the assembly of some ODAs and a significant level of ciliary activity that may result in the atypically mild clinical phenotype. The results also suggest that partial restoration of ciliary function by therapeutic agents could lead to significant improvement of disease symptoms.
Asunto(s)
Trastornos de la Motilidad Ciliar/genética , Trastornos de la Motilidad Ciliar/patología , Proteínas Asociadas a Microtúbulos/genética , Proteínas Mutantes/metabolismo , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Cilios/metabolismo , Cilios/ultraestructura , Dineínas/metabolismo , Femenino , Humanos , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Persona de Mediana Edad , Mutación/genética , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
In many respects, genetic studies in cystic fibrosis (CF) serve as a paradigm for a human Mendelian genetic success story. From recognition of the condition as a heritable pathological entity to implementation of personalized treatments based on genetic findings, this multistep pathway of progress has focused on the genetic underpinnings of CF clinical disease. Along this path was the recognition that not all CFTR gene mutations produce the same disease and the recognition of the complex, multifactorial nature of CF genotype-phenotype relationships. The non- CFTR genetic components (gene modifiers) that contribute to variation in phenotype are the focus of this review. A multifaceted approach involving candidate gene studies, genome-wide association studies, and gene expression studies has revealed significant gene modifiers for multiple CF phenotypes. The bold challenges for the future are to integrate the findings into our understanding of CF pathogenesis and to use the knowledge to develop novel therapies.
Asunto(s)
Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , FenotipoRESUMEN
Rationale: Non-cystic fibrosis bronchiectasis is characterized by airway mucus accumulation and sputum production, but the role of mucus concentration in the pathogenesis of these abnormalities has not been characterized.Objectives: This study was designed to: 1) measure mucus concentration and biophysical properties of bronchiectasis mucus; 2) identify the secreted mucins contained in bronchiectasis mucus; 3) relate mucus properties to airway epithelial mucin RNA/protein expression; and 4) explore relationships between mucus hyperconcentration and disease severity.Methods: Sputum samples were collected from subjects with bronchiectasis, with and without chronic erythromycin administration, and healthy control subjects. Sputum percent solid concentrations, total and individual mucin concentrations, osmotic pressures, rheological properties, and inflammatory mediators were measured. Intracellular mucins were measured in endobronchial biopsies by immunohistochemistry and gene expression. MUC5B (mucin 5B) polymorphisms were identified by quantitative PCR. In a replication bronchiectasis cohort, spontaneously expectorated and hypertonic saline-induced sputa were collected, and mucus/mucin concentrations were measured.Measurements and Main Results: Bronchiectasis sputum exhibited increased percent solids, total and individual (MUC5B and MUC5AC) mucin concentrations, osmotic pressure, and elastic and viscous moduli compared with healthy sputum. Within subjects with bronchiectasis, sputum percent solids correlated inversely with FEV1 and positively with bronchiectasis extent, as measured by high-resolution computed tomography, and inflammatory mediators. No difference was detected in MUC5B rs35705950 SNP allele frequency between bronchiectasis and healthy individuals. Hypertonic saline inhalation acutely reduced non-cystic fibrosis bronchiectasis mucus concentration by 5%.Conclusions: Hyperconcentrated airway mucus is characteristic of subjects with bronchiectasis, likely contributes to disease pathophysiology, and may be a target for pharmacotherapy.
Asunto(s)
Bronquiectasia/tratamiento farmacológico , Bronquiectasia/fisiopatología , Eritromicina/uso terapéutico , Moco/química , Sistema Respiratorio/fisiopatología , Esputo/química , Anciano , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Moco/microbiología , Queensland , Esputo/microbiologíaRESUMEN
Primary ciliary dyskinesia (PCD) is a rare disorder that affects the biogenesis or function of motile cilia resulting in chronic airway disease. PCD is genetically and phenotypically heterogeneous, with causative mutations identified in over 40 genes; however, the genetic basis of many cases is unknown. Using whole-exome sequencing, we identified three affected siblings with clinical symptoms of PCD but normal ciliary structure, carrying compound heterozygous loss-of-function variants in CFAP221. Computational analysis suggests that these variants are the most damaging alleles shared by all three siblings. Nasal epithelial cells from one of the subjects demonstrated slightly reduced beat frequency (16.5 Hz vs 17.7 Hz, p = 0.16); however, waveform analysis revealed that the CFAP221 defective cilia beat in an aberrant circular pattern. These results show that genetic variants in CFAP221 cause PCD and that CFAP221 should be considered a candidate gene in cases where PCD is suspected but cilia structure and beat frequency appear normal.
Asunto(s)
Trastornos de la Motilidad Ciliar/genética , Variación Genética , Proteínas/genética , Proteínas/metabolismo , Alelos , Proteínas de Unión a Calmodulina , Cilios/genética , Trastornos de la Motilidad Ciliar/diagnóstico por imagen , Células Epiteliales , Exones/genética , Humanos , Mutación , Secuenciación del ExomaRESUMEN
RATIONALE: In primary ciliary dyskinesia, factors leading to disease heterogeneity are poorly understood. OBJECTIVES: To describe early lung disease progression in primary ciliary dyskinesia and identify associations between ultrastructural defects and genotypes with clinical phenotype. METHODS: This was a prospective, longitudinal (5 yr), multicenter, observational study. Inclusion criteria were less than 19 years at enrollment and greater than or equal to two annual study visits. Linear mixed effects models including random slope and random intercept were used to evaluate longitudinal associations between the ciliary defect group (or genotype group) and clinical features (percent predicted FEV1 and weight and height z-scores). MEASUREMENTS AND MAIN RESULTS: A total of 137 participants completed 732 visits. The group with absent inner dynein arm, central apparatus defects, and microtubular disorganization (IDA/CA/MTD) (n = 41) were significantly younger at diagnosis and in mixed effects models had significantly lower percent predicted FEV1 and weight and height z-scores than the isolated outer dynein arm defect (n = 55) group. Participants with CCDC39 or CCDC40 mutations (n = 34) had lower percent predicted FEV1 and weight and height z-scores than those with DNAH5 mutations (n = 36). For the entire cohort, percent predicted FEV1 decline was heterogeneous with a mean (SE) decline of 0.57 (0.25) percent predicted/yr. Rate of decline was different from zero only in the IDA/MTD/CA group (mean [SE], -1.11 [0.48] percent predicted/yr; P = 0.02). CONCLUSIONS: Participants with IDA/MTD/CA defects, which included individuals with CCDC39 or CCDC40 mutations, had worse lung function and growth indices compared with those with outer dynein arm defects and DNAH5 mutations, respectively. The only group with a significant lung function decline over time were participants with IDA/MTD/CA defects.
Asunto(s)
Cilios/genética , Cilios/ultraestructura , Síndrome de Kartagener/genética , Niño , Estudios de Cohortes , Femenino , Genotipo , Humanos , Síndrome de Kartagener/fisiopatología , Estudios Longitudinales , Pulmón/fisiopatología , Masculino , Mutación/genética , Fenotipo , Estudios Prospectivos , Pruebas de Función RespiratoriaRESUMEN
PURPOSE: Primary ciliary dyskinesia (PCD) is a rare disorder of the mucociliary clearance leading to recurrent upper and lower respiratory tract infections. PCD is difficult to clinically distinguish from other entities leading to recurrent oto-sino-pulmonary infections, including primary immunodeficiency (PID). Nasal nitric oxide (nNO) is a sensitive and specific diagnostic test for PCD, but it has not been thoroughly examined in PID. Past publications have suggested an overlap in nNO levels among subjects with PCD and PID. We sought to determine if nNO measurements among patients diagnosed with PID would fall significantly above the established PCD diagnostic cutoff value of 77 nL/min. METHODS: Children > 5 years old and adults with definitive PID or PCD diagnoses were recruited from outpatient subspecialty clinics. Participants underwent nNO testing by standardized protocol using a chemiluminescence analyzer and completed a questionnaire concerning their chronic oto-sino-pulmonary symptoms, including key clinical criteria specific to diagnosed PCD (neonatal respiratory distress at term birth, year-round cough or nasal congestion starting before 6 months of age, any organ laterality defect). RESULTS: Participants included 32 patients with PID, 27 patients with PCD, and 19 healthy controls. Median nNO was 228.9.1 nL/min in the PID group, 19.7 nL/min in the PCD group, and 269.4 in the healthy controls (p < 0.0001). Subjects with PCD were significantly more likely to report key clinical criteria specific to PCD, but approximately 25% of PID subjects also reported at least 1 of these key clinical criteria (mainly year-round cough or nasal congestion). CONCLUSIONS: While key clinical criteria associated with PCD often overlap with the symptoms reported in PID, nNO measurement by chemiluminescence technology allows for effective discrimination between PID and PCD.
Asunto(s)
Trastornos de la Motilidad Ciliar/diagnóstico , Óxido Nítrico/metabolismo , Enfermedades de Inmunodeficiencia Primaria/diagnóstico , Adolescente , Adulto , Niño , Trastornos de la Motilidad Ciliar/metabolismo , Diagnóstico Diferencial , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nariz , Enfermedades de Inmunodeficiencia Primaria/metabolismo , Adulto JovenRESUMEN
RATIONALE: The severity of cystic fibrosis (CF) lung disease varies widely, even for Phe508del homozygotes. Heritability studies show that more than 50% of the variability reflects non-cystic fibrosis transmembrane conductance regulator (CFTR) genetic variation; however, the full extent of the pertinent genetic variation is not known. OBJECTIVES: We sought to identify novel CF disease-modifying mechanisms using an integrated approach based on analyzing "in vivo" CF airway epithelial gene expression complemented with genome-wide association study (GWAS) data. METHODS: Nasal mucosal RNA from 134 patients with CF was used for RNA sequencing. We tested for associations of transcriptomic (gene expression) data with a quantitative phenotype of CF lung disease severity. Pathway analysis of CF GWAS data (n = 5,659 patients) was performed to identify novel pathways and assess the concordance of genomic and transcriptomic data. Association of gene expression with previously identified CF GWAS risk alleles was also tested. MEASUREMENTS AND MAIN RESULTS: Significant evidence of heritable gene expression was identified. Gene expression pathways relevant to airway mucosal host defense were significantly associated with CF lung disease severity, including viral infection, inflammation/inflammatory signaling, lipid metabolism, apoptosis, ion transport, Phe508del CFTR processing, and innate immune responses, including HLA (human leukocyte antigen) genes. Ion transport and CFTR processing pathways, as well as HLA genes, were identified across differential gene expression and GWAS signals. CONCLUSIONS: Transcriptomic analyses of CF airway epithelia, coupled to genomic (GWAS) analyses, highlight the role of heritable host defense variation in determining the pathophysiology of CF lung disease. The identification of these pathways provides opportunities to pursue targeted interventions to improve CF lung health.