Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33782111

RESUMEN

The bicycle is a low-cost means of transport linked to low risk of transmission of infectious disease. During the COVID-19 crisis, governments have therefore incentivized cycling by provisionally redistributing street space. We evaluate the impact of this new bicycle infrastructure on cycling traffic using a generalized difference in differences design. We scrape daily bicycle counts from 736 bicycle counters in 106 European cities. We combine these with data on announced and completed pop-up bike lane road work projects. Within 4 mo, an average of 11.5 km of provisional pop-up bike lanes have been built per city and the policy has increased cycling between 11 and 48% on average. We calculate that the new infrastructure will generate between $1 and $7 billion in health benefits per year if cycling habits are sticky.


Asunto(s)
Ciclismo/estadística & datos numéricos , COVID-19/epidemiología , Accidentes de Tránsito , Automóviles , Ciclismo/economía , Ciclismo/normas , COVID-19/transmisión , Ciudades , Planificación Ambiental , Europa (Continente) , Disparidades en el Estado de Salud , Humanos , Políticas , SARS-CoV-2/aislamiento & purificación , Seguridad , Transportes/métodos
2.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34663723

RESUMEN

In Indonesia, 60 million people live within 1 km of state forest. The government of Indonesia plans to grant community titles for 12.7 million hectares of land to communities living in and around forests. These titles allow for using nontimber forest products, practicing agroforestry, operating tourism businesses, and selective logging in designated production zones. Here, we estimate the early effects of the program's rollout. We use data on the delineation and introduction date of community forest titles on 2.4 million hectares of land across the country. We find that, contrary to the objective of the program, community titles aimed at conservation did not decrease deforestation; if anything, they tended to increase forest loss. In contrast, community titles in zones aimed at timber production decreased deforestation, albeit from higher baseline forest loss rates.


Asunto(s)
Conservación de los Recursos Naturales/legislación & jurisprudencia , Bosques , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/métodos , Agricultura Forestal/legislación & jurisprudencia , Humanos , Indonesia , Recursos Naturales
3.
Proc Biol Sci ; 290(2002): 20230988, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37434530

RESUMEN

Sea cucumbers (Holothuroidea) are a diverse clade of echinoderms found from intertidal waters to the bottom of the deepest oceanic trenches. Their reduced skeletons and limited number of phylogenetically informative traits have long obfuscated morphological classifications. Sanger-sequenced molecular datasets have also failed to constrain the position of major lineages. Noteworthy, topological uncertainty has hindered a resolution for Neoholothuriida, a highly diverse clade of Permo-Triassic age. We perform the first phylogenomic analysis of Holothuroidea, combining existing datasets with 13 novel transcriptomes. Using a highly curated dataset of 1100 orthologues, our efforts recapitulate previous results, struggling to resolve interrelationships among neoholothuriid clades. Three approaches to phylogenetic reconstruction (concatenation under both site-homogeneous and site-heterogeneous models, and coalescent-aware inference) result in alternative resolutions, all of which are recovered with strong support and across a range of datasets filtered for phylogenetic usefulness. We explore this intriguing result using gene-wise log-likelihood scores and attempt to correlate these with a large set of gene properties. While presenting novel ways of exploring and visualizing support for alternative trees, we are unable to discover significant predictors of topological preference, and our efforts fail to favour one topology. Neoholothuriid genomes seem to retain an amalgam of signals derived from multiple phylogenetic histories.


Asunto(s)
Pepinos de Mar , Animales , Filogenia , Rodilla de Cuadrúpedos , Equinodermos , Concienciación
4.
Mol Biol Evol ; 38(9): 4025-4038, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-33983409

RESUMEN

Phylogenomic subsampling is a procedure by which small sets of loci are selected from large genome-scale data sets and used for phylogenetic inference. This step is often motivated by either computational limitations associated with the use of complex inference methods or as a means of testing the robustness of phylogenetic results by discarding loci that are deemed potentially misleading. Although many alternative methods of phylogenomic subsampling have been proposed, little effort has gone into comparing their behavior across different data sets. Here, I calculate multiple gene properties for a range of phylogenomic data sets spanning animal, fungal, and plant clades, uncovering a remarkable predictability in their patterns of covariance. I also show how these patterns provide a means for ordering loci by both their rate of evolution and their relative phylogenetic usefulness. This method of retrieving phylogenetically useful loci is found to be among the top performing when compared with alternative subsampling protocols. Relatively common approaches such as minimizing potential sources of systematic bias or increasing the clock-likeness of the data are found to fare worse than selecting loci at random. Likewise, the general utility of rate-based subsampling is found to be limited: loci evolving at both low and high rates are among the least effective, and even those evolving at optimal rates can still widely differ in usefulness. This study shows that many common subsampling approaches introduce unintended effects in off-target gene properties and proposes an alternative multivariate method that simultaneously optimizes phylogenetic signal while controlling for known sources of bias.


Asunto(s)
Genoma , Animales , Filogenia
5.
Syst Biol ; 70(3): 421-439, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32882040

RESUMEN

Phylogenomic and paleontological data constitute complementary resources for unraveling the phylogenetic relationships and divergence times of lineages, yet few studies have attempted to fully integrate them. Several unique properties of echinoids (sea urchins) make them especially useful for such synthesizing approaches, including a remarkable fossil record that can be incorporated into explicit phylogenetic hypotheses. We revisit the phylogeny of crown group Echinoidea using a total-evidence dating approach that combines the largest phylogenomic data set for the clade, a large-scale morphological matrix with a dense fossil sampling, and a novel compendium of tip and node age constraints. To this end, we develop a novel method for subsampling phylogenomic data sets that selects loci with high phylogenetic signal, low systematic biases, and enhanced clock-like behavior. Our results demonstrate that combining different data sources increases topological accuracy and helps resolve conflicts between molecular and morphological data. Notably, we present a new hypothesis for the origin of sand dollars, and restructure the relationships between stem and crown echinoids in a way that implies a long stretch of undiscovered evolutionary history of the crown group in the late Paleozoic. Our efforts help bridge the gap between phylogenomics and phylogenetic paleontology, providing a model example of the benefits of combining the two. [Echinoidea; fossils; paleontology; phylogenomics; time calibration; total evidence.].


Asunto(s)
Fósiles , Paleontología , Animales , Evolución Biológica , Filogenia , Erizos de Mar
6.
Proc Biol Sci ; 288(1950): 20210044, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33947239

RESUMEN

Fossils provide our only direct window into evolutionary events in the distant past. Incorporating them into phylogenetic hypotheses of living clades can help time-calibrate divergences, as well as elucidate macroevolutionary dynamics. However, the effect fossils have on phylogenetic reconstruction from morphology remains controversial. The consequences of explicitly incorporating the stratigraphic ages of fossils using tip-dated inference are also unclear. Here, we use simulations to evaluate the performance of inference methods across different levels of fossil sampling and missing data. Our results show that fossil taxa improve phylogenetic analysis of morphological datasets, even when highly fragmentary. Irrespective of inference method, fossils improve the accuracy of phylogenies and increase the number of resolved nodes. They also induce the collapse of ancient and highly uncertain relationships that tend to be incorrectly resolved when sampling only extant taxa. Furthermore, tip-dated analyses under the fossilized birth-death process outperform undated methods of inference, demonstrating that the stratigraphic ages of fossils contain vital phylogenetic information. Fossils help to extract true phylogenetic signals from morphology, an effect that is mediated by both their distinctive morphology and their temporal information, and their incorporation in total-evidence phylogenetics is necessary to faithfully reconstruct evolutionary history.


Asunto(s)
Evolución Biológica , Fósiles , Filogenia
7.
Syst Biol ; 69(6): 1052-1067, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32208492

RESUMEN

Fossils are the only remaining evidence of the majority of species that have ever existed, providing a direct window into events in evolutionary history that shaped the diversification of life on Earth. Phylogenies underpin our ability to make sense of evolution but are routinely inferred using only data available from living organisms. Although extinct taxa have been shown to add crucial information for inferring macroevolutionary patterns and processes (such as ancestral states, paleobiogeography and diversification dynamics), the role fossils play in reconstructing phylogeny is controversial. Since the early years of phylogenetic systematics, different studies have dismissed the impact of fossils due to their incompleteness, championed their ability to overturn phylogenetic hypotheses or concluded that their behavior is indistinguishable from that of extant taxa. Based on taxon addition experiments on empirical data matrices, we show that the inclusion of paleontological data has a remarkable effect in phylogenetic inference. Incorporating fossils often (yet not always) induces stronger topological changes than increasing sampling of extant taxa. Fossils also produce unique topological rearrangements, allowing the exploration of regions of treespace that are never visited by analyses of only extant taxa. Previous studies have proposed a suite of explanations for the topological behavior of fossils, such as their retention of unique morphologies or their ability to break long branches. We develop predictive models that demonstrate that the possession of distinctive character state combinations is the primary predictor of the degree of induced topological change, and that the relative impact of taxa (fossil and extant) can be predicted to some extent before any phylogenetic analysis. Our results bolster the consensus of recent empirical studies by showing the unique role of paleontological data in phylogenetic inference, and provide the first quantitative assessment of its determinants, with broad consequences for the design of taxon sampling in both morphological and total-evidence analyses. [phylogeny, morphology, fossils, parsimony, Bayesian inference.].


Asunto(s)
Modelos Biológicos , Filogenia , Fósiles , Paleontología
8.
Syst Biol ; 68(1): 63-77, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29669028

RESUMEN

While grasslands, one of Earth's major biomes, are known for their close evolutionary ties with ungulate grazers, these habitats are also paramount to the origins and diversification of other animals. Within the primarily South American spider subfamily Amaurobioidinae (Anyphaenidae), several species are found living in the continent's grasslands, with some displaying putative morphological adaptations to dwelling unnoticed in the grass blades. Herein, a dated molecular phylogeny provides the backbone for analyses revealing the ecological and morphological processes behind these spiders' grassland adaptations. The multiple switches from Patagonian forests to open habitats coincide with the expansion of South America's grasslands during the Miocene, while the specialized morphology of several grass-dwelling spiders originated at least three independent times and is best described as the result of different selective regimes operating on macroevolutionary timescales. Although grass-adapted lineages evolved towards different peaks in adaptive landscape, they all share one characteristic: an anterior narrowing of the prosoma allowing spiders to extend the first two pairs of legs, thus maintaining a slender resting posture in the grass blade. By combining phylogenetic, morphological, and biogeographic perspectives we disentangle multiple factors determining the evolution of a clade of terrestrial invertebrate predators alongside their biomes.


Asunto(s)
Adaptación Fisiológica/fisiología , Pradera , Filogenia , Arañas/anatomía & histología , Arañas/genética , Adaptación Fisiológica/genética , Animales , Evolución Biológica , Ecosistema , América del Sur , Arañas/clasificación
9.
BMC Evol Biol ; 18(1): 189, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30545284

RESUMEN

BACKGROUND: Echinoidea is a clade of marine animals including sea urchins, heart urchins, sand dollars and sea biscuits. Found in benthic habitats across all latitudes, echinoids are key components of marine communities such as coral reefs and kelp forests. A little over 1000 species inhabit the oceans today, a diversity that traces its roots back at least to the Permian. Although much effort has been devoted to elucidating the echinoid tree of life using a variety of morphological data, molecular attempts have relied on only a handful of genes. Both of these approaches have had limited success at resolving the deepest nodes of the tree, and their disagreement over the positions of a number of clades remains unresolved. RESULTS: We performed de novo sequencing and assembly of 17 transcriptomes to complement available genomic resources of sea urchins and produce the first phylogenomic analysis of the clade. Multiple methods of probabilistic inference recovered identical topologies, with virtually all nodes showing maximum support. In contrast, the coalescent-based method ASTRAL-II resolved one node differently, a result apparently driven by gene tree error induced by evolutionary rate heterogeneity. Regardless of the method employed, our phylogenetic structure deviates from the currently accepted classification of echinoids, with neither Acroechinoidea (all euechinoids except echinothurioids), nor Clypeasteroida (sand dollars and sea biscuits) being monophyletic as currently defined. We show that phylogenetic signal for novel resolutions of these lineages is strong and distributed throughout the genome, and fail to recover systematic biases as drivers of our results. CONCLUSIONS: Our investigation substantially augments the molecular resources available for sea urchins, providing the first transcriptomes for many of its main lineages. Using this expanded genomic dataset, we resolve the position of several clades in agreement with early molecular analyses but in disagreement with morphological data. Our efforts settle multiple phylogenetic uncertainties, including the position of the enigmatic deep-sea echinothurioids and the identity of the sister clade to sand dollars. We offer a detailed assessment of evolutionary scenarios that could reconcile our findings with morphological evidence, opening up new lines of research into the development and evolutionary history of this ancient clade.


Asunto(s)
Genómica , Filogenia , Erizos de Mar/clasificación , Erizos de Mar/genética , Animales , Kelp , Funciones de Verosimilitud , Erizos de Mar/anatomía & histología , Especificidad de la Especie
10.
J Anat ; 233(6): 696-714, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30353539

RESUMEN

Brittle stars (Phylum Echinodermata, Class Ophiuroidea) have evolved rapid locomotion employing muscle and skeletal elements within their (usually) five arms to apply forces in a manner analogous to that of vertebrates. Inferring the inner workings of the arm has been difficult as the skeleton is internal and many of the ossicles are sub-millimeter in size. Advances in 3D visualization and technology have made the study of movement in ophiuroids possible. We developed six virtual 3D skeletal models to demonstrate the potential range of motion of the main arm ossicles, known as vertebrae, and six virtual 3D skeletal models of non-vertebral ossicles. These models revealed the joint center and relative position of the arm ossicles during near-maximal range of motion. The models also provide a platform for the comparative evaluation of functional capabilities between disparate ophiuroid arm morphologies. We made observations on specimens of Ophioderma brevispina and Ophiothrix angulata. As these two taxa exemplify two major morphological categories of ophiuroid vertebrae, they provide a basis for an initial assessment of the functional consequences of these disparate vertebral morphologies. These models suggest potential differences in the structure of the intervertebral articulations in these two species, implying disparities in arm flexion mechanics. We also evaluated the differences in the range of motion between segments in the proximal and distal halves of the arm length in a specimen of O. brevispina, and found that the morphology of vertebrae in the distal portion of the arm allows for higher mobility than in the proximal portion. Our models of non-vertebral ossicles show that they rotate further in the direction of movement than the vertebrae themselves in order to accommodate arm flexion. These findings raise doubts over previous hypotheses regarding the functional consequences of ophiuroid arm disparity. Our study demonstrates the value of integrating experimental data and visualization of articulated structures when making functional interpretations instead of relying on observations of vertebral or segmental morphology alone. This methodological framework can be applied to other ophiuroid taxa to enable comparative functional analyses. It will also facilitate biomechanical analyses of other invertebrate groups to illuminate how appendage or locomotor function evolved.


Asunto(s)
Equinodermos/anatomía & histología , Equinodermos/fisiología , Locomoción/fisiología , Fenómenos Fisiológicos Musculoesqueléticos , Sistema Musculoesquelético/anatomía & histología , Animales
11.
BMC Bioinformatics ; 17(1): 471, 2016 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-27855645

RESUMEN

BACKGROUND: Taxonomic descriptions are traditionally composed in natural language and published in a format that cannot be directly used by computers. The Exploring Taxon Concepts (ETC) project has been developing a set of web-based software tools that convert morphological descriptions published in telegraphic style to character data that can be reused and repurposed. This paper introduces the first semi-automated pipeline, to our knowledge, that converts morphological descriptions into taxon-character matrices to support systematics and evolutionary biology research. We then demonstrate and evaluate the use of the ETC Input Creation - Text Capture - Matrix Generation pipeline to generate body part measurement matrices from a set of 188 spider morphological descriptions and report the findings. RESULTS: From the given set of spider taxonomic publications, two versions of input (original and normalized) were generated and used by the ETC Text Capture and ETC Matrix Generation tools. The tools produced two corresponding spider body part measurement matrices, and the matrix from the normalized input was found to be much more similar to a gold standard matrix hand-curated by the scientist co-authors. Special conventions utilized in the original descriptions (e.g., the omission of measurement units) were attributed to the lower performance of using the original input. The results show that simple normalization of the description text greatly increased the quality of the machine-generated matrix and reduced edit effort. The machine-generated matrix also helped identify issues in the gold standard matrix. CONCLUSIONS: ETC Text Capture and ETC Matrix Generation are low-barrier and effective tools for extracting measurement values from spider taxonomic descriptions and are more effective when the descriptions are self-contained. Special conventions that make the description text less self-contained challenge automated extraction of data from biodiversity descriptions and hinder the automated reuse of the published knowledge. The tools will be updated to support new requirements revealed in this case study.


Asunto(s)
Evolución Biológica , Programas Informáticos , Arañas/anatomía & histología , Animales , Humanos
12.
Cladistics ; 31(2): 142-165, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34772260

RESUMEN

Neriidae are a small family of acalyptratae flies, mostly distributed in the tropics. Very little is known about their biology, and the evolutionary relationships among species have never been evaluated. We perform the first comprehensive phylogenetic analysis of the family, including 48 species from all biogeographic regions inhabited, as well as five species of Micropezidae and one Cypselosomatidae as outgroups. We build a morphological data matrix of 194 characters, including 72 continuous characters. We first explore ways to deal with the issue of scaling continuous characters, including rescaling ranges to unity and using implied weighting. We find that both strategies result in very different phylogenetic hypotheses, and that implied weighting reduces the problem of scaling, but only partially. Furthermore, using implied weighting after rescaling characters improves the congruence between partitions and results in higher values of group support. With respect to the Neriidae, we confirm the monophyly of the family and of most its genera, although we do not obtain any of the currently accepted suprageneric groups. We propose to restrict the Eoneria and Nerius groups exclusively to the Neotropical fauna, and synonymize Glyphidops subgenus Oncopsia Enderlein with Glyphidops subgenus Glyphidops Enderlein, eliminating the subgeneric divisions. This revised phylogeny presents a striking biogeographic consistency, and shows that previous main divisions of the family were based on events of convergence.

13.
Mitochondrial DNA B Resour ; 9(3): 390-393, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529110

RESUMEN

We present the mitochondrial genome of the deep-sea, epibenthic, irregular echinoid Echinocrepis rostrata, representing the first sequenced mitogenome of the order Holasteroida. The length of the complete E. rostrata mitochondrial genome is 15,716 base pairs, and its GC content is 34.87%. It contains 13 protein-coding genes, two rRNA genes, and 22 tRNA genes, whose order is identical to that of all other available echinoid mitogenomes. Phylogenetic analysis of available mitochondrial genomes, based on all coding loci, places E. rostrata as the sister group to spatangoids (heart urchins).

14.
Nat Commun ; 15(1): 4147, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755167

RESUMEN

Today, more than 70 carbon pricing schemes have been implemented around the globe, but their contributions to emissions reductions remains a subject of heated debate in science and policy. Here we assess the effectiveness of carbon pricing in reducing emissions using a rigorous, machine-learning assisted systematic review and meta-analysis. Based on 483 effect sizes extracted from 80 causal ex-post evaluations across 21 carbon pricing schemes, we find that introducing a carbon price has yielded immediate and substantial emission reductions for at least 17 of these policies, despite the low level of prices in most instances. Statistically significant emissions reductions range between -5% to -21% across the schemes (-4% to -15% after correcting for publication bias). Our study highlights critical evidence gaps with regard to dozens of unevaluated carbon pricing schemes and the price elasticity of emissions reductions. More rigorous synthesis of carbon pricing and other climate policies is required across a range of outcomes to advance our understanding of "what works" and accelerate learning on climate solutions in science and policy.

15.
Curr Biol ; 33(23): 5225-5232.e3, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37935193

RESUMEN

Pterobranchs, a major group of the phylum Hemichordata, first appear in the fossil record during the Cambrian,1 and there are more than 600 fossil genera dominated by the mainly planktic graptolites of the Paleozoic, which are widely used as zone fossils for correlating sedimentary rock sequences.2 Pterobranchs are rare today; they are sessile marine forms represented by Rhabdopleura, which is considered the only living graptolite, and Cephalodiscus. Unlike their sister taxon, the colonial graptolites, cephalodiscids are pseudocolonial.3,4 Here, we describe a problematic fossil from the Silurian (Pridoli) Bertie Group of Ontario (420 mya), a sequence of near-shore sediments well known for its remarkably preserved diversity of eurypterids (sea scorpions).5 The fossil, Rotaciurca superbus, a new genus and species, was familiarly known as Ezekiel's Wheel,5 with reference to the unusual circular arrangement of the tubes that compose it. The structure and arrangement of the tubes identify Rotaciurca as a pterobranch, and phylogenetic analysis groups it with the cephalodiscids. We place it in a new family Rotaciurcidae to distinguish it from Cephalodiscidae. A large structure associated with the tubes is interpreted as a float, which would distinguish Rotaciurca as the only known planktic cephalodiscid-thus cephalodiscids, like the graptolites, invaded the water column. This mode of life reflects the rarity of pseudocolonial macroinvertebrates in planktic ocean communities, a role occupied by the tunicates (Chordata) known as salps today. Our estimates of divergence times, the first using relaxed total-evidence clocks, date the origins of both hemichordates and pterobranchs to the earliest Cambrian (Fortunian).


Asunto(s)
Cordados no Vertebrados , Cordados , Urocordados , Animales , Filogenia , Fósiles
16.
Elife ; 112022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35315317

RESUMEN

Echinoids are key components of modern marine ecosystems. Despite a remarkable fossil record, the emergence of their crown group is documented by few specimens of unclear affinities, rendering their early history uncertain. The origin of sand dollars, one of its most distinctive clades, is also unclear due to an unstable phylogenetic context. We employ 18 novel genomes and transcriptomes to build a phylogenomic dataset with a near-complete sampling of major lineages. With it, we revise the phylogeny and divergence times of echinoids, and place their history within the broader context of echinoderm evolution. We also introduce the concept of a chronospace - a multidimensional representation of node ages - and use it to explore methodological decisions involved in time calibrating phylogenies. We find the choice of clock model to have the strongest impact on divergence times, while the use of site-heterogeneous models and alternative node prior distributions show minimal effects. The choice of loci has an intermediate impact, affecting mostly deep Paleozoic nodes, for which clock-like genes recover dates more congruent with fossil evidence. Our results reveal that crown group echinoids originated in the Permian and diversified rapidly in the Triassic, despite the relative lack of fossil evidence for this early diversification. We also clarify the relationships between sand dollars and their close relatives and confidently date their origins to the Cretaceous, implying ghost ranges spanning approximately 50 million years, a remarkable discrepancy with their rich fossil record.


Asunto(s)
Ecosistema , Fósiles , Animales , Teorema de Bayes , Evolución Biológica , Filogenia , Erizos de Mar/genética
17.
Evolution ; 75(6): 1567-1581, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33782962

RESUMEN

Adaptive landscapes are a common way of conceptualizing the phenotypic evolution of lineages across deep time. Although multiple approaches exist to implement this concept into operational models of trait evolution, inferring adaptive landscapes from comparative datasets remains challenging. Here, I explore the macroevolutionary dynamics of echinoid body size using data from over 5000 specimens and a phylogenetic framework incorporating a dense fossil sampling and spanning approximately 270 million years. Furthermore, I implement a novel approach of exploring alternative parameterizations of adaptive landscapes that succeeds in finding simpler, yet better-fitting models. Echinoid body size has been constrained to evolve within a single adaptive optimum for much of the clade's history. However, most of the morphological disparity of echinoids was generated by multiple regime shifts that drove the repeated evolution of miniaturized and gigantic forms. Events of body size innovation occurred predominantly in the Late Cretaceous and were followed by a drastic slowdown following the Cretaceous-Paleogene mass extinction. The discovery of these patterns is contingent upon directly sampling fossil taxa. The macroevolution of echinoid body size is therefore characterized by a late increase in disparity (likely linked to an expansion of ecospace), generated by active processes driving lineages toward extreme morphologies.


Asunto(s)
Tamaño Corporal , Fósiles , Erizos de Mar/genética , Animales , Extinción Biológica , Fenotipo , Filogenia
18.
Evolution ; 75(4): 819-831, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33578446

RESUMEN

Sauropod dinosaurs include the largest terrestrial vertebrates that have ever lived. Virtually every part of the sauropod body is heavily modified in association with gigantic size and associated physiological alterations. Sauropod skulls are no exception: they feature elongated, telescoped facial regions connected to tilted neurocrania and reoriented jaw adductor muscles. Several of these cranial features have been suggested to be adaptations for feeding on the one hand and the result of paedomorphic transformation near the base of Sauropoda on the other. However, the scarcity of sauropodomorph ontogenetic series has impeded further investigation of these hypotheses. We re-evaluated the cranial material attributed to the early sauropodomorph Anchisaurus, which our phylogenetic analyses confirm to be closely related to sauropods. Digital assembly of µCT-scanned skulls of the two known specimens, a juvenile and an adult, permitted us to examine the detailed ontogeny of cranial elements. The skull anatomy of Anchisaurus is distinguished by a mosaic of ancestral saurischian and sauropod-like characters. Sauropod-like characters of the braincase and adductor chamber appear late in ontogeny, suggesting that these features first evolved by the developmental mechanism of terminal addition. Shape analyses and investigation of allometric evolution demonstrate that cranial characters that appear late in the ontogeny of sauropodomorphs closely related to sauropods are already present in the embryos and juveniles of sauropods, suggesting a predisplacement-type shift in developmental timing from the ancestral anchisaurian condition. We propose that this developmental shift relaxed prior constraints on skull morphology, allowing sauropods to explore a novel range of phenotypes and enabling specializations of the feeding apparatus. The shift in timing occurred in concert with the evolution of gigantism and physiological and locomotory innovations.


Asunto(s)
Evolución Biológica , Dinosaurios/anatomía & histología , Cráneo/anatomía & histología , Animales , Tamaño Corporal , Fósiles , Filogenia
20.
Curr Biol ; 33(23): 5273, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38052164
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA