RESUMEN
The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA) for the manipulation of superparamagnetic beads (SPBs), and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads(®) demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead(®) SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 µm Dynabeads(®) travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 µm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device.
Asunto(s)
Técnicas Biosensibles/instrumentación , Dispositivos Laboratorio en un Chip , Magnetismo/instrumentación , Microesferas , Diseño de Equipo , Análisis Numérico Asistido por Computador , Poliestirenos/químicaRESUMEN
Mammalian promoters can be separated into two classes, conserved TATA box-enriched promoters, which initiate at a well-defined site, and more plastic, broad and evolvable CpG-rich promoters. We have sequenced tags corresponding to several hundred thousand transcription start sites (TSSs) in the mouse and human genomes, allowing precise analysis of the sequence architecture and evolution of distinct promoter classes. Different tissues and families of genes differentially use distinct types of promoters. Our tagging methods allow quantitative analysis of promoter usage in different tissues and show that differentially regulated alternative TSSs are a common feature in protein-coding genes and commonly generate alternative N termini. Among the TSSs, we identified new start sites associated with the majority of exons and with 3' UTRs. These data permit genome-scale identification of tissue-specific promoters and analysis of the cis-acting elements associated with them.
Asunto(s)
Evolución Molecular , Regiones Promotoras Genéticas , Regiones no Traducidas 3' , Animales , Secuencia de Bases , ADN , Genoma , Proteoma , TATA BoxRESUMEN
2D imaging of biochips is particularly interesting for multiplex biosensing. Resonant properties allow label-free detection using the change of refractive index at the chip surface. We demonstrate a new principle of Scanning Of Resonance on Chip by Imaging (SORCI) based on spatial profiles of nanopatterns of resonant waveguide gratings (RWGs) and its embodiment in a fluidic chip for real-time biological studies. This scheme allows multiplexing of the resonance itself by providing nanopattern sensing areas in a bioarray format. Through several chip designs we discuss resonance spatial profiles, dispersion and electric field distribution for optimal light-matter interaction with biological species of different sizes. Fluidic integration is carried out with a black anodized aluminum chamber, advantageous in term of mechanical stability, multiple uses of the chip, temperature control and low optical background. Real-time hybridization experiments are illustrated by SNP (Single Nucleotide Polymorphism) detection in gyrase A of E. coli K12, observed in evolution studies of resistance to the antibiotic ciprofloxacin. We choose a 100 base pairs (bp) DNA target (~30 kDa) including the codon of interest and demonstrate the high specificity of our technique for probes and targets with close affinity constants. This work validates the safe applicability of our unique combination of RWGs and simple instrumentation for real-time biosensing with sensitivity in buffer solution of ~10 pg/mm². Paralleling the success of RWGs sensing for cells sensing, our work opens new avenues for a large number of biological studies.
Asunto(s)
Girasa de ADN/genética , ADN Bacteriano/genética , Farmacorresistencia Bacteriana/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Optogenética , Antibacterianos/farmacología , Ciprofloxacina/farmacología , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Hibridación de Ácido Nucleico/genética , Optogenética/instrumentación , Optogenética/métodos , Polimorfismo de Nucleótido SimpleRESUMEN
In this paper, we report the construction of a polymerase chain reaction (PCR) device for fast amplification and detection of DNA. This device consists of an interchangeable PCR chamber, a temperature control component as well as an optical detection system. The DNA amplification happens on an interchangeable chip with the volumes as low as 1.25 µl, while the heating and cooling rate was as fast as 12.7°C/second ensuring that the total time needed of only 25 min to complete the 35 cycle PCR amplification. An optimized PCR with two-temperature approach for denaturing and annealing (Td and Ta) of DNA was also formulated with the PCR chip, with which the amplification of male-specific sex determining region Y (SRY) gene marker by utilizing raw saliva was successfully achieved and the genetic identification was in-situ detected right after PCR by the optical detection system.
Asunto(s)
ADN/análisis , Técnicas Analíticas Microfluídicas , Reacción en Cadena de la Polimerasa/instrumentación , Humanos , Sistemas de Atención de Punto , Saliva/química , Proteína de la Región Y Determinante del Sexo/genéticaRESUMEN
Polymers are sustainable and renewable materials that are in high demand due to their excellent properties. Natural and synthetic polymers with high flexibility, good biocompatibility, good degradation rate, and stiffness are widely used for various applications, such as tissue engineering, drug delivery, and microfluidic chip fabrication. Indeed, recent advances in microfluidic technology allow the fabrication of polymeric matrix to construct microfluidic scaffolds for tissue engineering and to set up a well-controlled microenvironment for manipulating fluids and particles. In this review, polymers as materials for the fabrication of microfluidic chips have been highlighted. Successful models exploiting polymers in microfluidic devices to generate uniform particles as drug vehicles or artificial cells have been also discussed. Additionally, using polymers as bioink for 3D printing or as a matrix to functionalize the sensing surface in microfluidic devices has also been mentioned. The rapid progress made in the combination of polymers and microfluidics presents a low-cost, reproducible, and scalable approach for a promising future in the manufacturing of biomimetic scaffolds for tissue engineering.
RESUMEN
We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes. The hot-melt adhesive wax can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate (PMMA) film, glass sheets, or metal plate. The bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by vacuating and venting the chip in a hot-water bath. To study the biocompatibility and applicability of the wax-based microfluidic chip, we tested the PCR compatibility with the chip materials first. Then we applied the wax-paper based microfluidic chip to HeLa cell electroporation (EP). Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein (GFP) recombinant Escherichia coli (E. coli) bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration.
Asunto(s)
Técnicas Analíticas Microfluídicas/instrumentación , Papel , Ceras/química , Adhesividad , Diseño de Equipo , Análisis de Falla de EquipoRESUMEN
Stephen (2008) identified 13,736 ultraconserved elements (UCEs) in placental mammals and investigated their evolution in opossum, chicken, frog, and fugu. They found that there was a massive expansion of UCEs during tetrapod evolution and the substitution rate in UCEs showed a significant decline in tetrapods compared with fugu, suggesting they were exapted in tetrapods. They considered it unlikely that these elements are ancient but evolved at a higher rate in teleost fishes. In this study, we investigated the evolution of UCEs in a cartilaginous fish, the elephant shark and show that nearly half the UCEs were present in the jawed vertebrate ancestor. The substitution rate in UCEs is higher in fugu than in elephant shark, and approximately one-third of ancient UCEs have diverged beyond recognition in teleost fishes. These data indicate that UCEs have evolved at a higher rate in teleost fishes, which may have implications for their vast diversity and evolutionary success.
Asunto(s)
Evolución Biológica , Secuencia Conservada/genética , Animales , Pollos , Peces , Genoma , Humanos , Zarigüeyas , Filogenia , Ranidae , VertebradosRESUMEN
The coronavirus disease 2019 (COVID-19) is an on-going pandemic caused by the SARS-coronavirus-2 (SARS-CoV-2) which targets the respiratory system of humans. The published data show that children, unlike adults, are less susceptible to contracting the disease. This article aims at understanding why children constitute a minor group among hospitalized COVID-19 patients. Here, we hypothesize that the measles, mumps, and rubella (MMR) vaccine could provide a broad neutralizing antibody against numbers of diseases, including COVID-19. Our hypothesis is based on the 30 amino acid sequence homology between the SARS-CoV-2 Spike (S) glycoprotein (PDB: 6VSB) of both the measles virus fusion (F1) glycoprotein (PDB: 5YXW_B) and the rubella virus envelope (E1) glycoprotein (PDB: 4ADG_A). Computational analysis of the homologous region detected the sequence as antigenic epitopes in both measles and rubella. Therefore, we believe that humoral immunity, created through the MMR vaccination, provides children with advantageous protection against COVID-19 as well, however, an experimental analysis is required.
RESUMEN
Non-communicable diseases (NCDs) are of increasing concern for society and national governments, as well as globally due to their high mortality rate. The main risk factors of NCDs can be classified into the categories of self-management, genetic factors, environmental factors, factors of medical conditions, and socio-demographic factors. The main focus is on the elements of self-management and to reach a consensus about the influence of food on risk management and actions toward the prevention of NCDs at all stages of life. Nutrition interventions are essential in managing the risk of NCDs. As they are of the utmost importance, this review highlights NCDs and their risk factors and outlines several common prevention strategies. We foresee that the best prevention management strategy will include individual (lifestyle management), societal (awareness management), national (health policy decisions), and global (health strategy) elements, with target actions, such as multi-sectoral partnership, knowledge and information management, and innovations. The most effective preventative strategy is the one that leads to changes in lifestyle with respect to diet, physical activities, cessation of smoking, and the control of metabolic disorders.
Asunto(s)
Enfermedades no Transmisibles , Dieta , Política de Salud , Humanos , Estilo de Vida , Enfermedades no Transmisibles/epidemiología , Factores de RiesgoRESUMEN
Recently more consideration has been given to the use of renewable materials and agricultural residues. Wheat production is increasing yearly and correspondingly, the volume of by-products from the wheat process is increasing, as well. It is important to find the use of the residuals for higher value-added products, and not just for the food industry or animal feed purposes as it is happening now. Agricultural residue of the roller milled wheat grain is a wheat bran description. The low-cost of wheat bran and its composition assortment provides a good source of substrate for various enzymes and organic acids production and other biotechnological applications. The main purpose of this review article is to look into recent trends, developments, and applications of wheat bran.
Asunto(s)
Fibras de la Dieta , Animales , Biotecnología , Fibras de la Dieta/economía , Fibras de la Dieta/metabolismo , Fibras de la Dieta/uso terapéutico , HumanosRESUMEN
Synthetic biology is a rapidly growing multidisciplinary branch of science which aims to mimic complex biological systems by creating similar forms. Constructing an artificial system requires optimization at the gene and protein levels to allow the formation of entire biological pathways. Advances in cell-free synthetic biology have helped in discovering new genes, proteins, and pathways bypassing the complexity of the complex pathway interactions in living cells. Furthermore, this method is cost- and time-effective with access to the cellular protein factory without the membrane boundaries. The freedom of design, full automation, and mimicking of in vivo systems reveal advantages of synthetic biology that can improve the molecular understanding of processes, relevant for life science applications. In parallel, in vitro approaches have enhanced our understanding of the living system. This review highlights the recent evolution of cell-free gene design, proteins, and cells integrated with microfluidic platforms as a promising technology, which has allowed for the transformation of the concept of bioprocesses. Although several challenges remain, the manipulation of biological synthetic machinery in microfluidic devices as suitable 'homes' for in vitro protein synthesis has been proposed as a pioneering approach for the development of new platforms, relevant in biomedical and diagnostic contexts towards even the sensing and monitoring of environmental issues.
RESUMEN
In this paper, we present a two-phase microfluidic system capable of incubating and quantifying microbead-based agglutination assays. The microfluidic system is based on a simple fabrication solution, which requires only laboratory tubing filled with carrier oil, driven by negative pressure using a syringe pump. We provide a user-friendly interface, in which a pipette is used to insert single droplets of a 1.25-µL volume into a system that is continuously running and therefore works entirely on demand without the need for stopping, resetting or washing the system. These assays are incubated by highly efficient passive mixing with a sample-to-answer time of 2.5 min, a 5â»10-fold improvement over traditional agglutination assays. We study system parameters such as channel length, incubation time and flow speed to select optimal assay conditions, using the streptavidin-biotin interaction as a model analyte quantified using optical image processing. We then investigate the effect of changing the concentration of both analyte and microbead concentrations, with a minimum detection limit of 100 ng/mL. The system can be both low- and high-throughput, depending on the rate at which assays are inserted. In our experiments, we were able to easily produce throughputs of 360 assays per hour by simple manual pipetting, which could be increased even further by automation and parallelization. Agglutination assays are a versatile tool, capable of detecting an ever-growing catalog of infectious diseases, proteins and metabolites. A system such as this one is a step towards being able to produce high-throughput microfluidic diagnostic solutions with widespread adoption. The development of analytical techniques in the microfluidic format, such as the one presented in this work, is an important step in being able to continuously monitor the performance and microfluidic outputs of organ-on-chip devices.
RESUMEN
Microfluidic devices present unique advantages for the development of efficient drug carrier particles, cell-free protein synthesis systems, and rapid techniques for direct drug screening. Compared to bulk methods, by efficiently controlling the geometries of the fabricated chip and the flow rates of multiphase fluids, microfluidic technology enables the generation of highly stable, uniform, monodispersed particles with higher encapsulation efficiency. Since the existing preclinical models are inefficient drug screens for predicting clinical outcomes, microfluidic platforms might offer a more rapid and cost-effective alternative. Compared to 2D cell culture systems and in vivo animal models, microfluidic 3D platforms mimic the in vivo cell systems in a simple, inexpensive manner, which allows high throughput and multiplexed drug screening at the cell, organ, and whole-body levels. In this review, the generation of appropriate drug or gene carriers including different particle types using different configurations of microfluidic devices is highlighted. Additionally, this paper discusses the emergence of fabricated microfluidic cell-free protein synthesis systems for potential use at point of care as well as cell-, organ-, and human-on-a-chip models as smart, sensitive, and reproducible platforms, allowing the investigation of the effects of drugs under conditions imitating the biological system.
RESUMEN
Hepatic oval cells (HOCs) are considered the progeny of the intrahepatic stem cells that are found in a small population in the liver after hepatocyte proliferation is inhibited. Due to their small number, isolation and capture of these cells constitute a challenging task for immunosensor technology. This work describes the development of a 3D-printed continuous flow system and exploits disposable screen-printed electrodes for the rapid detection of HOCs that over-express the OV6 marker on their membrane. Multiwall carbon nanotube (MWCNT) electrodes have a chitosan film that serves as a scaffold for the immobilization of oval cell marker antibodies (anti-OV6-Ab), which enhance the sensitivity of the biomarker and makes the designed sensor specific for oval cells. The developed sensor can be easily embedded into the 3D-printed flow cell to allow cells to be exposed continuously to the functionalized surface. The continuous flow is intended to increase capture of most of the target cells in the specimen. Contact angle measurements were performed to characterize the nature and quality of the modified sensor surface, and electrochemical measurements (cyclic voltammetry (CV) and square wave voltammetry (SWV)) were performed to confirm the efficiency and selectivity of the fabricated sensor to detect HOCs. The proposed method is valuable for capturing rare cells and could provide an effective tool for cancer diagnosis and detection.
RESUMEN
Recently, microfluidic technologies have attracted an enormous amount of interest as potential new tools for a large range of applications including materials synthesis, chemical and biological detection, drug delivery and screening, point-of-care diagnostics, and in-the-field analysis. Their ability to handle extremely small volumes of fluids is accompanied by additional benefits, most notably, rapid and efficient mass and heat transfer. In addition, reactions performed within microfluidic systems are highly controlled, meaning that many advanced materials, with uniform and bespoke properties, can be synthesized in a direct and rapid manner. In this review, we discuss the utility of microfluidic systems in the synthesis of materials for a variety of biological applications. Such materials include microparticles or microcapsules for drug delivery, nanoscale materials for medicine or cellular assays, and micro- or nanofibers for tissue engineering.
RESUMEN
In the early days of pharmacy, the development of new drugs was frequently achieved by restless chemists who worked solitarily, day by day for years [...].
RESUMEN
Air quality depends on the various gases and particles present in it. Both natural phenomena and human activities affect the cleanliness of air. In the last decade, many countries experienced an unprecedented industrial growth, resulting in changing air quality values, and correspondingly, affecting our life quality. Air quality can be accessed by employing microchips that qualitatively and quantitatively determine the present gases and dust particles. The so-called particular matter 2.5 (PM2.5) values are of high importance, as such small particles can penetrate the human lung barrier and enter the blood system. There are cancer cases related to many air pollutants, and especially to PM2.5, contributing to exploding costs within the healthcare system. We focus on various current and potential future air pollutants, and propose solutions on how to protect our health against such dangerous substances. Recent developments in the Organ-on-Chip (OoC) technology can be used to study air pollution as well. OoC allows determination of pollutant toxicity and speeds up the development of novel pharmaceutical drugs.
RESUMEN
Environmental studies are primarily done by culturing isolated microorganisms or by amplifying and sequencing conserved genes. Difficulties understanding the complexity of large numbers of various microorganisms in an environment led to the development of techniques to enrich specific microorganisms for upstream analysis, ultimately leading to single-cell isolation and analyses. We discuss the significance of single-cell technologies in omics studies with focus on metagenomics and metatranscriptomics. We propose that by reducing sample heterogeneity using single-cell genomics, metaomic studies can be simplified.
Asunto(s)
Genómica , Análisis de la Célula Individual , TranscriptomaRESUMEN
This review summarizes usage of genome-editing technologies for metagenomic studies; these studies are used to retrieve and modify valuable microorganisms for production, particularly in marine metagenomics. Organisms may be cultivable or uncultivable. Metagenomics is providing especially valuable information for uncultivable samples. The novel genes, pathways and genomes can be deducted. Therefore, metagenomics, particularly genome engineering and system biology, allows for the enhancement of biological and chemical producers and the creation of novel bioresources. With natural resources rapidly depleting, genomics may be an effective way to efficiently produce quantities of known and novel foods, livestock feed, fuels, pharmaceuticals and fine or bulk chemicals.