Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 74(3): 769-786, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36273326

RESUMEN

Automating dynamic fine root data collection in the field is a longstanding challenge with multiple applications for co-interpretation and synthesis for ecosystem understanding. High frequency root data are only achievable with paired automated sampling and processing. However, automatic minirhizotron (root camera) instruments are still rare and data are often not collected in natural soils or analysed at high temporal resolution. Instruments must also be affordable for replication and robust under variable natural conditions. Here, we show a system built with off-the-shelf parts which samples at sub-daily resolution. We paired this with a neural network to analyse all images collected. We performed two mesocosm studies and two field trials alongside ancillary data collection (soil CO2 efflux, temperature, and moisture content, and 'PhenoCam'-derived above-ground dynamics). We produce robust and replicated daily time series of root dynamics under all conditions. Temporal root changes were a stronger driver than absolute biomass on soil CO2 efflux in the mesocosm. Proximal sensed above-ground dynamics and below-ground dynamics from minirhizotron data were not synchronized. Root properties extracted were sensitive to soil moisture and occasionally to time of day (potentially relating to soil moisture). This may only affect high frequency imagery and should be considered in interpreting such data.


Asunto(s)
Ecosistema , Procedimientos Quirúrgicos Robotizados , Dióxido de Carbono , Raíces de Plantas , Suelo
2.
Glob Chang Biol ; 25(4): 1315-1325, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30681227

RESUMEN

Warming temperatures are likely to accelerate permafrost thaw in the Arctic, potentially leading to the release of old carbon previously stored in deep frozen soil layers. Deeper thaw depths in combination with geomorphological changes due to the loss of ice structures in permafrost, may modify soil water distribution, creating wetter or drier soil conditions. Previous studies revealed higher ecosystem respiration rates under drier conditions, and this study investigated the cause of the increased ecosystem respiration rates using radiocarbon signatures of respired CO2 from two drying manipulation experiments: one in moist and the other in wet tundra. We demonstrate that higher contributions of CO2 from shallow soil layers (0-15 cm; modern soil carbon) drive the increased ecosystem respiration rates, while contributions from deeper soil (below 15 cm from surface and down to the permafrost table; old soil carbon) decreased. These changes can be attributed to more aerobic conditions in shallow soil layers, but also the soil temperature increases in shallow layers but decreases in deep layers, due to the altered thermal properties of organic soils. Decreased abundance of aerenchymatous plant species following drainage in wet tundra reduced old carbon release but increased aboveground plant biomass elevated contributions of autotrophic respiration to ecosystem respiration. The results of this study suggest that drier soils following drainage may accelerate decomposition of modern soil carbon in shallow layers but slow down decomposition of old soil carbon in deep layers, which may offset some of the old soil carbon loss from thawing permafrost.

3.
Glob Chang Biol ; 25(9): 2855-2868, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31237398

RESUMEN

Drought, fire, and windstorms can interact to degrade tropical forests and the ecosystem services they provide, but how these forests recover after catastrophic disturbance events remains relatively unknown. Here, we analyze multi-year measurements of vegetation dynamics and function (fluxes of CO2 and H2 O) in forests recovering from 7 years of controlled burns, followed by wind disturbance. Located in southeast Amazonia, the experimental forest consists of three 50-ha plots burned annually, triennially, or not at all from 2004 to 2010. During the subsequent 6-year recovery period, postfire tree survivorship and biomass sharply declined, with aboveground C stocks decreasing by 70%-94% along forest edges (0-200 m into the forest) and 36%-40% in the forest interior. Vegetation regrowth in the forest understory triggered partial canopy closure (70%-80%) from 2010 to 2015. The composition and spatial distribution of grasses invading degraded forest evolved rapidly, likely because of the delayed mortality. Four years after the experimental fires ended (2014), the burned plots assimilated 36% less carbon than the Control, but net CO2 exchange and evapotranspiration (ET) had fully recovered 7 years after the experimental fires ended (2017). Carbon uptake recovery occurred largely in response to increased light-use efficiency and reduced postfire respiration, whereas increased water use associated with postfire growth of new recruits and remaining trees explained the recovery in ET. Although the effects of interacting disturbances (e.g., fires, forest fragmentation, and blowdown events) on mortality and biomass persist over many years, the rapid recovery of carbon and water fluxes can help stabilize local climate.


Asunto(s)
Dióxido de Carbono , Incendios , Brasil , Ecosistema , Bosques , Árboles
4.
New Phytol ; 214(3): 1078-1091, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28181244

RESUMEN

Sun-induced fluorescence (SIF) in the far-red region provides a new noninvasive measurement approach that has the potential to quantify dynamic changes in light-use efficiency and gross primary production (GPP). However, the mechanistic link between GPP and SIF is not completely understood. We analyzed the structural and functional factors controlling the emission of SIF at 760 nm (F760 ) in a Mediterranean grassland manipulated with nutrient addition of nitrogen (N), phosphorous (P) or nitrogen-phosphorous (NP). Using the soil-canopy observation of photosynthesis and energy (SCOPE) model, we investigated how nutrient-induced changes in canopy structure (i.e. changes in plant forms abundance that influence leaf inclination distribution function, LIDF) and functional traits (e.g. N content in dry mass of leaves, N%, Chlorophyll a+b concentration (Cab) and maximum carboxylation capacity (Vcmax )) affected the observed linear relationship between F760 and GPP. We conclude that the addition of nutrients imposed a change in the abundance of different plant forms and biochemistry of the canopy that controls F760 . Changes in canopy structure mainly control the GPP-F760 relationship, with a secondary effect of Cab and Vcmax . In order to exploit F760 data to model GPP at the global/regional scale, canopy structural variability, biodiversity and functional traits are important factors that have to be considered.


Asunto(s)
Dióxido de Carbono/metabolismo , Pradera , Nitrógeno/farmacología , Fósforo/farmacología , Fotosíntesis , Hojas de la Planta/anatomía & histología , Carácter Cuantitativo Heredable , Luz Solar , Simulación por Computador , Región Mediterránea , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Estaciones del Año , Espectrometría de Fluorescencia
5.
Glob Chang Biol ; 23(6): 2396-2412, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27901306

RESUMEN

As surface temperatures are expected to rise in the future, ice-rich permafrost may thaw, altering soil topography and hydrology and creating a mosaic of wet and dry soil surfaces in the Arctic. Arctic wetlands are large sources of CH4 , and investigating effects of soil hydrology on CH4 fluxes is of great importance for predicting ecosystem feedback in response to climate change. In this study, we investigate how a decade-long drying manipulation on an Arctic floodplain influences CH4 -associated microorganisms, soil thermal regimes, and plant communities. Moreover, we examine how these drainage-induced changes may then modify CH4 fluxes in the growing and nongrowing seasons. This study shows that drainage substantially lowered the abundance of methanogens along with methanotrophic bacteria, which may have reduced CH4 cycling. Soil temperatures of the drained areas were lower in deep, anoxic soil layers (below 30 cm), but higher in oxic topsoil layers (0-15 cm) compared to the control wet areas. This pattern of soil temperatures may have reduced the rates of methanogenesis while elevating those of CH4 oxidation, thereby decreasing net CH4 fluxes. The abundance of Eriophorum angustifolium, an aerenchymatous plant species, diminished significantly in the drained areas. Due to this decrease, a higher fraction of CH4 was alternatively emitted to the atmosphere by diffusion, possibly increasing the potential for CH4 oxidation and leading to a decrease in net CH4 fluxes compared to a control site. Drainage lowered CH4 fluxes by a factor of 20 during the growing season, with postdrainage changes in microbial communities, soil temperatures, and plant communities also contributing to this reduction. In contrast, we observed CH4 emissions increased by 10% in the drained areas during the nongrowing season, although this difference was insignificant given the small magnitudes of fluxes. This study showed that long-term drainage considerably reduced CH4 fluxes through modified ecosystem properties.


Asunto(s)
Cambio Climático , Metano , Suelo/química , Regiones Árticas , Temperatura
6.
Oecologia ; 181(2): 571-82, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26932467

RESUMEN

Positive species richness-productivity relationships are common in biodiversity experiments, but how resource availability modifies biodiversity effects in grass-legume mixtures composed of highly productive species is yet to be explicitly tested. We addressed this question by choosing two grasses (Arrhenatherum elatius and Dactylis glomerata) and two legumes (Medicago × varia and Onobrychis viciifolia) which are highly productive in monocultures and dominant in mixtures (the Jena Experiment). We established monocultures, all possible two- and three-species mixtures, and the four-species mixture under three different resource supply conditions (control, fertilization, and shading). Compared to the control, community biomass production decreased under shading (-56 %) and increased under fertilization (+12 %). Net diversity effects (i.e., mixture minus mean monoculture biomass) were positive in the control and under shading (on average +15 and +72 %, respectively) and negative under fertilization (-10 %). Positive complementarity effects in the control suggested resource partitioning and facilitation of growth through symbiotic N2 fixation by legumes. Positive complementarity effects under shading indicated that resource partitioning is also possible when growth is carbon-limited. Negative complementarity effects under fertilization suggested that external nutrient supply depressed facilitative grass-legume interactions due to increased competition for light. Selection effects, which quantify the dominance of species with particularly high monoculture biomasses in the mixture, were generally small compared to complementarity effects, and indicated that these species had comparable competitive strengths in the mixture. Our study shows that resource availability has a strong impact on the occurrence of positive diversity effects among tall and highly productive grass and legume species.


Asunto(s)
Biodiversidad , Pradera , Biomasa , Fabaceae , Poaceae
7.
New Phytol ; 200(2): 340-349, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23692181

RESUMEN

Drought-induced tree mortality results from an interaction of several mechanisms. Plant water and carbon relations are interdependent and assessments of their individual contributions are difficult. Because drought always affects both plant hydration and carbon assimilation, it is challenging to disentangle their concomitant effects on carbon balance and carbon translocation. Here, we report results of a manipulation experiment specifically designed to separate drought effects on carbon and water relations from those on carbon translocation. In a glasshouse experiment, we manipulated the carbon balance of Norway spruce saplings exposed to either drought or carbon starvation (CO2 withdrawal), or both treatments, and compared the dynamics of carbon exchange, allocation and storage in different tissues. Drought killed trees much faster than did carbon starvation. Storage C pools were not depleted at death for droughted trees as they were for starved, well-watered trees. Hence drought has a significant detrimental effect on a plant's ability to utilize stored carbon. Unless they can be transported to where they are needed, sufficient carbon reserves alone will not assure survival of a drought except under specific conditions, such as moderate drought, or in species that maintain plant water relations required for carbon re-mobilization.


Asunto(s)
Dióxido de Carbono/metabolismo , Picea/fisiología , Agua/fisiología , Carbohidratos/análisis , Carbono/metabolismo , Sequías , Oxígeno/metabolismo , Hojas de la Planta/fisiología , Raíces de Plantas/fisiología , Brotes de la Planta/fisiología , Tallos de la Planta/fisiología , Plantones/fisiología , Árboles
8.
Ann Bot ; 107(6): 965-79, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21385779

RESUMEN

BACKGROUND AND AIMS: The biological mechanisms of niche complementarity allowing for a stable coexistence of a large number of species in a plant community are still poorly understood. This study investigated how small-statured forbs use environmental niches in light and CO(2) to explain their persistence in diverse temperate grasslands. METHODS: Light and CO(2) profiles and the corresponding leaf characteristics of seven small-statured forbs were measured in monocultures and a multi-species mixture within a biodiversity experiment (Jena Experiment) to assess their adjustment to growth conditions in the canopy. KEY RESULTS: Environmental conditions near the ground varied throughout the season with a substantial CO(2) enrichment (>70 µmol mol(-1) at 2 cm, >20 µmol mol(-1) at 10 cm above soil surface) and a decrease in light transmittance (to <5 % deep in the canopy) with large standing biomass (>500 g d. wt m(-2)) in the multi-species assemblage. Leaf morphology, biochemistry and physiology of small-statured forbs adjusted to low light in the mixture compared with the monocultures. However, the net carbon assimilation balance during the period of low light only compensated the costs of maintenance respiration, while CO(2) enrichment near the ground did not allow for additional carbon gain. Close correlations of leaf mass per area with changes in light availability suggested that small-statured forbs are capable of adjusting to exploit seasonal niches with better light supply for growth and to maintain the carbon metabolism for survival if light transmittance is substantially reduced in multi-species assemblages. CONCLUSIONS: This study shows that adjustment to a highly dynamic light environment is most important for spatial and seasonal niche separation of small-statured forb species in regularly mown, species-rich grasslands. The utilization of short-period CO(2) enrichment developing in dense vegetation close to the ground hardly improves their carbon balance and contributes little to species segregation along environmental niche axes.


Asunto(s)
Adaptación Fisiológica , Luz , Plantas/metabolismo , Poaceae/fisiología , Biodiversidad , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Ambiente , Fotosíntesis , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Poaceae/efectos de la radiación , Dinámica Poblacional , Estaciones del Año , Vapor/análisis
9.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190519, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-32892722

RESUMEN

The inter-annual variability (IAV) of the terrestrial carbon cycle is tightly linked to the variability of semi-arid ecosystems. Thus, it is of utmost importance to understand what the main meteorological drivers for the IAV of such ecosystems are, and how they respond to extreme events such as droughts and heatwaves. To shed light onto these questions, we analyse the IAV of carbon fluxes, its relation with meteorological variables, and the impact of compound drought and heatwave on the carbon cycle of two similar ecosystems, along a precipitation gradient. A four-year long dataset from 2016 to 2019 was used for the FLUXNET sites ES-LMa and ES-Abr, located in central (39°56'25″ N 5°46'28″ W) and southeastern (38°42'6″ N 6°47'9″ W) Spain. We analyse the physiological impact of compound drought and heatwave on the dominant tree species, Quercus ilex. Our results show that the gross primary productivity of the wetter ecosystem was less sensitive to changes in soil water content, compared to the dryer site. Still, the wetter ecosystem was a source of CO2 each year, owing to large ecosystem respiration during summer; while the dry site turned into a CO2 sink during wet years. Overall, the impact of the summertime compound event on annual CO2 fluxes was marginal at both sites, compared to drought events during spring or autumn. This highlights that drought timing is crucial to determine the annual carbon fluxes in these semi-arid ecosystems. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Asunto(s)
Ciclo del Carbono , Cambio Climático , Clima Desértico , Sequías , Calor Extremo , Quercus/crecimiento & desarrollo , Ecosistema , Lluvia , España
10.
Ecol Appl ; 18(6): 1391-405, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18767618

RESUMEN

Potential losses by advection were estimated at Hainich Forest, Thuringia, Germany, where the tower is located at a gentle slope. Three approaches were used: (1) comparing nighttime eddy covariance fluxes to an independent value of total ecosystem respiration by bottom-up modeling of the underlying processes, (2) direct measurements of a horizontal CO2 gradient and horizontal wind speed at 2 m height in order to calculate horizontal advection, and (3) direct measurements of a vertical CO2 gradient and a three-dimensional wind profile in order to calculate vertical advection. In the first approach, nighttime eddy covariance measurements were compared to independent values of total ecosystem respiration by means of bottom-up modeling of the underlying biological processes. Turbulent fluxes and storage term were normalized to the fluxes calculated by the bottom-up model. Below a u(*) threshold of 0.6 m/s the normalized turbulent fluxes decreased with decreasing u(*), but the flux to the storage increased only up to values less than 20% of the modeled flux at low turbulence. Horizontal advection was measured by a horizontal CO2 gradient over a distance of 130 m combined with horizontal wind speed measurements. Horizontal advection occurred at most of the evenings independently of friction velocity above the canopy. Nevertheless, horizontal advection was higher when u(*) was low. The peaks of horizontal advection correlated with changes in temperature. A full mass balance including turbulent fluxes, storage, and horizontal and vertical advection resulted in an increase of spikes and scatter but seemed to generally improve the results from the flux measurements. The comparison of flux data with independent bottom-up modeling results as well as the direct measurements resulted in strong indications that katabatic flows along the hill slope during evening and night reduces the measured apparent ecosystem respiration rate. In addition, anabatic flows may occur during the morning. We conclude that direct measurements of horizontal and vertical advection are highly necessary at sites located even on gentle hill slopes.


Asunto(s)
Movimientos del Aire , Dióxido de Carbono/análisis , Ecosistema , Monitoreo del Ambiente/métodos , Árboles/metabolismo , Dióxido de Carbono/metabolismo , Alemania , Modelos Teóricos , Incertidumbre
11.
Carbon Balance Manag ; 6: 5, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21854587

RESUMEN

BACKGROUND: This study evaluates the carbon dioxide and other greenhouse gas fluxes to the atmosphere resulting from charcoal production in Zambia. It combines new biomass and flux data from a study, that was conducted in a miombo woodland within the Kataba Forest Reserve in the Western Province of Zambia, with data from other studies. RESULTS: The measurements at Kataba compared protected area (3 plots) with a highly disturbed plot outside the forest reserve and showed considerably reduced biomass after logging for charcoal production. The average aboveground biomass content of the reserve (Plots 2-4) was around 150 t ha-1, while the disturbed plot only contained 24 t ha-1. Soil carbon was not reduced significantly in the disturbed plot. Two years of eddy covariance measurements resulted in net ecosystem exchange values of -17 ± 31 g C m-2 y-1, in the first and 90 ± 16 g C m-2 in the second year. Thus, on the basis of these two years of measurement, there is no evidence that the miombo woodland at Kataba represents a present-day carbon sink. At the country level, it is likely that deforestation for charcoal production currently leads to a per capita emission rate of 2 - 3 t CO2 y-1. This is due to poor forest regeneration, although the resilience of miombo woodlands is high. Better post-harvest management could change this situation. CONCLUSIONS: We argue that protection of miombo woodlands has to account for the energy demands of the population. The production at national scale that we estimated converts into 10,000 - 15,000 GWh y-1 of energy in the charcoal. The term "Charcoal Trap" we introduce, describes the fact that this energy supply has to be substituted when woodlands are protected. One possible solution, a shift in energy supply from charcoal to electricity, would reduce the pressure of forests but requires high investments into grid and power generation. Since Zambia currently cannot generate this money by itself, the country will remain locked in the charcoal trap such as many other of its African neighbours. The question arises whether and how money and technology transfer to increase regenerative electrical power generation should become part of a post-Kyoto process. Furthermore, better inventory data are urgently required to improve knowledge about the current state of the woodland usage and recovery. Net greenhouse gas emissions could be reduced substantially by improving the post-harvest management, charcoal production technology and/or providing alternative energy supply.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA