RESUMEN
BACKGROUND: Although malaria transmission has experienced an overall decline in sub-Saharan Africa, urban malaria is now considered an emerging health issue due to rapid and uncontrolled urbanization and the adaptation of vectors to urban environments. Fine-scale hazard and exposure maps are required to support evidence-based policies and targeted interventions, but data-driven predictive spatial modelling is hindered by gaps in epidemiological and entomological data. A knowledge-based geospatial framework is proposed for mapping the heterogeneity of urban malaria hazard and exposure under data scarcity. It builds on proven geospatial methods, implements open-source algorithms, and relies heavily on vector ecology knowledge and the involvement of local experts. METHODS: A workflow for producing fine-scale maps was systematized, and most processing steps were automated. The method was evaluated through its application to the metropolitan area of Dakar, Senegal, where urban transmission has long been confirmed. Urban malaria exposure was defined as the contact risk between adult Anopheles vectors (the hazard) and urban population and accounted for socioeconomic vulnerability by including the dimension of urban deprivation that is reflected in the morphology of the built-up fabric. Larval habitat suitability was mapped through a deductive geospatial approach involving the participation of experts with a strong background in vector ecology and validated with existing geolocated entomological data. Adult vector habitat suitability was derived through a similar process, based on dispersal from suitable breeding site locations. The resulting hazard map was combined with a population density map to generate a gridded urban malaria exposure map at a spatial resolution of 100 m. RESULTS: The identification of key criteria influencing vector habitat suitability, their translation into geospatial layers, and the assessment of their relative importance are major outcomes of the study that can serve as a basis for replication in other sub-Saharan African cities. Quantitative validation of the larval habitat suitability map demonstrates the reliable performance of the deductive approach, and the added value of including local vector ecology experts in the process. The patterns displayed in the hazard and exposure maps reflect the high degree of heterogeneity that exists throughout the city of Dakar and its suburbs, due not only to the influence of environmental factors, but also to urban deprivation. CONCLUSIONS: This study is an effort to bring geospatial research output closer to effective support tools for local stakeholders and decision makers. Its major contributions are the identification of a broad set of criteria related to vector ecology and the systematization of the workflow for producing fine-scale maps. In a context of epidemiological and entomological data scarcity, vector ecology knowledge is key for mapping urban malaria exposure. An application of the framework to Dakar showed its potential in this regard. Fine-grained heterogeneity was revealed by the output maps, and besides the influence of environmental factors, the strong links between urban malaria and deprivation were also highlighted.
Asunto(s)
Malaria , Mosquitos Vectores , Adulto , Animales , Humanos , Senegal/epidemiología , Ecología , Malaria/epidemiología , Ecosistema , LarvaRESUMEN
BACKGROUND: The preventive and curative strategies of malaria are based on promoting the use of long-lasting insecticidal nets (LLINs) and treating confirmed cases with artemisinin-based combination therapy. These strategies have led to a sharp decline in the burden of malaria, which remains a significant public health problem in sub-Saharan countries. The objective of this study was to determine and compare the residual efficacy of LLINs recommended by the World Health Organization. METHODS: The study was conducted in six villages in two sites in Senegal located in the Sahelo-Sudanian area of the Thiès region, 70 km from Dakar and in Mbagame, a semi-urban zone in the Senegal River Valley. A census was conducted of all sleeping places in each household to be covered by LLINs. Five brands of LLIN were distributed, and every six months, retention rates, net use, maintenance, physical integrity, insecticide chemical content, and biological efficacy were examined for each type of LLIN. RESULTS: A total of 3012 LLINs were distributed in 1249 households in both sites, with an average coverage rate of 94% (95% CI 92.68-95.3). After 36 months, the average retention rate was 12.5% and this rate was respectively 20.5%, 15.1%, 10%, 7%, and 3% for Olyset Net®, Dawa Plus® 2.0, PermaNet® 2.0, NetProtect® and Life Net®, respectively. The proportion of LLINs with holes and the average number of holes per mosquito net increased significantly during each follow-up, with a large predominance of size 1 (small) holes for all types of LLINs distributed. During the three-year follow-up, bioassay mortality rates of a susceptible strain of insectary reared Anopheles coluzzii decreased in the following net types: in Dawa Plus® 2.0 (100% to 51.7%), PermaNet® 2.0 (96.6% to 83%), and Olyset Net® (96.6% to 33.3%). Mortality rates remained at 100% in Life Net® over the same time period. After 36 months, the average insecticide content per brand of LLIN decreased by 40.9% for Dawa Plus® 2.0, 31% for PermaNet® 2.0, 39.6% for NetProtect® and 51.9% for Olyset Net® and 40.1% for Life Net. CONCLUSIONS: Although some net types retained sufficient insecticidal activity, based on all durability parameters measured, none of the net types survived longer than 2 years.
Asunto(s)
Anopheles , Mosquiteros Tratados con Insecticida , Insecticidas , Malaria , Animales , Insecticidas/farmacología , Malaria/prevención & control , SenegalRESUMEN
BACKGROUND: Long lasting insecticidal nets (LLIN) are one of the core components of global malaria prevention and control. The lifespan of LLIN varies widely depending on the population or environment, and randomized studies are required to compare LLIN inaccording to arbitrary thresholds households under different field conditions. This study investigated survival of different LLIN brands in Senegal. METHODS: Ten thousand six hundred eight LLINs were distributed in five regions, each stratified by rural and urban setting. As part of the longitudinal follow-up, 2222 nets were randomly sampled and monitored from 6 to 36 months. Using random effects for households, Bayesian models were used to estimate independent survival by net type (Interceptor®, Life Net®, MAGNet™, Netprotect®, Olyset® Net, PermaNet® 2.0 R, PermaNet® 2.0 C, Yorkool® LN) and by area (rural/urban). In addition to survival, median survival time and attrition of each LLIN brand was determined. Attrition was defined as nets that were missing because they were reported given away, destroyed and thrown away, or repurposed. RESULTS: Three net types had a proportion of survival above 80% after 24 months: Interceptor®87.8% (95% CI 80-93.4); conical PermaNet® 2.0 86.9% (95% CI 79.3-92.4) and Life Net® 85.6% (95% CI 75-93). At 36 months, conical PermaNet® 2.0 maintained a good survival rate, 79.5% (95% CI 65.9-88.8). The attrition due to redistributed nets showed that the two conical net types (PermaNet® 2.0 and Interceptor®) were more often retained by households and their median retention time was well above 3 years (median survival time = 3.5 years for PermaNet® 2.0 and median survival time = 4 years for Interceptor®). Despite this good retention, Interceptor® had weak physical integrity and its median survival due to wear and tear was below 3 years (median survival time = 2.4 years). The odds ratio of survival was 2.5 times higher in rural settings than in urban settings (OR 2.5; 95% CI 1.7-3.7). CONCLUSIONS: Differences in survival among LLIN may be driven by brand, shape or environmental setting. In this study in Senegal, conical PermaNet® 2.0 were retained in households while rectangular PermaNet® 2.0 had lower retention, suggesting that net shape may play a role in retention and should be further investigated. Distribution of preferred LLIN shape, accompanied by good communication on care and repair, could lead to increased effective lifespan, and allow for longer intervals between universal coverage campaigns.
Asunto(s)
Mosquiteros Tratados con Insecticida , Insecticidas , Malaria , Teorema de Bayes , Humanos , Malaria/epidemiología , Malaria/prevención & control , Control de Mosquitos , Senegal/epidemiologíaRESUMEN
BACKGROUND: Long-lasting insecticidal nets (LLINs) are the primary malaria prevention and control intervention in many parts of sub-Saharan Africa. While LLINs are expected to last at least 3 years under normal use conditions, they can lose effectiveness because they fall out of use, are discarded, repurposed, physically damaged, or lose insecticidal activity. The contributions of these different interrelated factors to durability of nets and their protection against malaria have been unclear. METHODS: Starting in 2009, LLIN durability studies were conducted in seven countries in Africa over 5 years. WHO-recommended measures of attrition, LLIN use, insecticidal activity, and physical integrity were recorded for eight different net brands. These data were combined with analyses of experimental hut data on feeding inhibition and killing effects of LLINs on both susceptible and pyrethroid resistant malaria vectors to estimate the protection against malaria transmission-in terms of vectorial capacity (VC)-provided by each net cohort over time. Impact on VC was then compared in hypothetical scenarios where one durability outcome measure was set at the best possible level while keeping the others at the observed levels. RESULTS: There was more variability in decay of protection over time by country than by net brand for three measures of durability (ratios of variance components 4.6, 4.4, and 1.8 times for LLIN survival, use, and integrity, respectively). In some countries, LLIN attrition was slow, but use declined rapidly. Non-use of LLINs generally had more effect on LLIN impact on VC than did attrition, hole formation, or insecticide loss. CONCLUSIONS: There is much more variation in LLIN durability among countries than among net brands. Low levels of use may have a larger impact on effectiveness than does variation in attrition or LLIN degradation. The estimated entomological effects of chemical decay are relatively small, with physical decay probably more important as a driver of attrition and non-use than as a direct cause of loss of effect. Efforts to maximize LLIN impact in operational settings should focus on increasing LLIN usage, including through improvements in LLIN physical integrity. Further research is needed to understand household decisions related to LLIN use, including the influence of net durability and the presence of other nets in the household.
Asunto(s)
Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Insecticidas , Malaria/prevención & control , Control de Mosquitos/estadística & datos numéricos , Mosquitos Vectores , Angola , Benin , Gambia , Kenia , Malaria/transmisión , Malaui , Modelos Teóricos , Mozambique , SenegalRESUMEN
BACKGROUND: From 2011 to 2014, an indoor residual spray (IRS) programme for malaria vectors control was implemented in six health districts in Senegal. The main objective of the present study was to evaluate the efficacy of bendiocarb (FICAM WP 80) sprayed on different wall surfaces and its impact on malaria vectors. The entomological monitoring activities were carried out monthly in five treated sentinel villages and one control untreated village in each district. METHODS: The residual efficacy of bendiocarb applied at a dosage of 0.4 g/sq m was monitored for a period up to 9 months post-IRS using WHO cone bioassay method. This assay consisted to expose 2-5 days old unfed susceptible Anopheles coluzzii females to sprayed walls for a period of 30 min. The mortality rates after 24 h post-exposure were estimated and compared between the different types of walls sprayed in each sentinel village. RESULTS: The results showed that the residual efficacy varied between the different sprayed walls, from one sentinel village to another and between the different campaigns. The FICAM had a residual efficacy of 3-6 months post-IRS on mud and cement wall surfaces. In some cases, the observed mortality rates were much higher than those reported elsewhere particularly during the first campaign in all the six districts. CONCLUSIONS: The FICAM was found to be effective with a residual efficacy varying from 3 to 6 months. If the quality of the IRS application is excluded as a possible explanation of the short efficacy duration, the results suggest at least two rounds of treatments in order to cover the rainy season that lasts 5 to 6 months in the area. Such treatments could be carried out before the intensification of the rains in July and August in order to better cover the transmission period that occurs between late August and October in the area.
Asunto(s)
Aerosoles/farmacología , Anopheles/efectos de los fármacos , Insecticidas/farmacología , Control de Mosquitos/métodos , Mosquitos Vectores/efectos de los fármacos , Fenilcarbamatos/farmacología , Aerosoles/administración & dosificación , Animales , Bioensayo , Entomología , Femenino , Humanos , Insecticidas/administración & dosificación , Fenilcarbamatos/administración & dosificación , Senegal , Encuestas y Cuestionarios , Factores de TiempoRESUMEN
BACKGROUND: The use of insecticides, through indoor residual spraying and long-lasting insecticide-treated nets (LLINs), is essential to control malaria vectors. However, the sustainability of these tools is challenged by the spread of insecticide resistance in Anopheles mosquitoes. This study was conducted to assess the susceptibility to insecticides and to determine the resistance mechanisms in malaria vectors in Dielmo, a rural area of western Senegal where LLINs were introduced a decade ago. METHODS: CDC bottle bioassays were used to determine the susceptibility of 2-5 day-old unfed Anopheles gambiae s.l. females to alphacypermethrin (12.5 µg/bottle), deltamethrin (12.5 µg/bottle), etofenprox (12.5 µg/bottle), lambdacyhalothrin (12.5 µg/bottle), permethrin (21.5 µg/bottle), DDT (100 µg/bottle), bendiocarb (12.5 µg/bottle), pirimiphos-methyl (20 µg/bottle) and fenitrothion (50 µg/bottle). The involvement of glutathione-S-transferases (GSTs) in insecticide resistance was assessed using a synergist, etacrynic acid (EA, 80 µg/bottle). Polymerase chain reaction (PCR) was used to investigate the presence of 'knock-down resistance (kdr)' mutation and to identify sibling species within the An. gambiae complex. RESULTS: CDC bottle bioassays showed that mosquitoes were fully susceptible to lambdacyhalothrin, bendiocarb and fenitrothion. Overall, mortality rates of 97, 94.6, 93.5, 92.1, and 90.1% were, respectively, observed for permethrin, deltamethrin, pirimiphos-methyl, etofenprox and alphacypermethrin. Resistance to DDT was observed, with a mortality rate of 62%. The use of EA significantly improved the susceptibility of An. gambiae s.l. to DDT by inhibiting GSTs (p = 0.03). PCR revealed that Anopheles arabiensis was the predominant species (91.3%; IC 95 86.6-94%) within An. gambiae complex from Dielmo, followed by Anopheles coluzzii (5.4%; IC 95 2.7-8.1%) and Anopheles gambiae s.s. (3.3%; IC 95 0.6-5.9%). Both 1014F and 1014S alleles were found in An. arabiensis population with frequencies of 0.08 and 0.361, respectively, and 0.233 and 0.133, respectively in An. coluzzii. In An. gambiae s.s. population, only kdr L1014F mutation was detected, with a frequency of 0.167. It was observed that some individual mosquitoes carried both alleles, with 19 specimens recorded for An. arabiensis and 2 for An. coluzzii. The presence of L1014F and L1014S alleles were not associated with resistance to pyrethroids and DDT in An. arabiensis. CONCLUSIONS: The co-occurrence of 1014F and 1014S alleles and the probable involvement of GSTs enzymes in insecticide resistance in An. gambiae s.l. should prompt the local vector programme to implement non-pyrethroid/DDT insecticides alternatives.
Asunto(s)
Anopheles/efectos de los fármacos , Anopheles/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Animales , Mosquiteros Tratados con Insecticida , Mutación , Senegal , Factores de TiempoRESUMEN
BACKGROUND: Urban malaria is an increasing concern in most of the sub-Saharan Africa countries. In Dakar, the capital city of Senegal, the malaria epidemiology has been complicated by recurrent flooding since 2005. The main vector control measure for malaria prevention in Dakar is the community use of long-lasting insecticide-treated nets. However, the increase of insecticide resistance reported in this area needs to be better understood for suitable resistance management. This study reports the situation of insecticide resistance and underlying mechanisms in Anopheles arabiensis populations from Dakar and its suburbs. RESULTS: All the populations tested showed resistance to almost all insecticides except organophosphates families, which remain the only lethal molecules. Piperonil butoxide (PBO) and ethacrinic acid (EA) the two synergists used, have respectively and significantly restored the susceptibility to DDT and permethrin of Anopheles population. Molecular identification of specimens revealed the presence of An. arabiensis only. Kdr genotyping showed the presence of the L1014F mutation (kdr-West) as well as L1014S (kdr-East). This L1014S mutation was found at very high frequencies (89.53%) in almost all districts surveyed, and in association with the L1014F (10.24%). CONCLUSION: Results showed the contribution of both target-site and metabolic mechanisms in conferring pyrethroid resistance to An. arabiensis from the flooded areas of Dakar suburbs. These data, although preliminary, stress the need for close monitoring of the urban An. arabiensis populations for a suitable insecticide resistance management system to preserve core insecticide-based vector control tools in this flooded area.
Asunto(s)
Anopheles/efectos de los fármacos , Resistencia a los Insecticidas , Insecticidas/farmacología , Piretrinas/farmacología , Animales , Ciudades , Larva/efectos de los fármacos , Pupa/efectos de los fármacos , Estaciones del Año , SenegalRESUMEN
BACKGROUND: Scaling-up of effective anti-malarial control strategies in Central-West region of Senegal has resulted in the sharp decline in malaria prevalence in this area. However, despite these strategies, residual malaria transmission has been observed in some villages (hot spots). The objective of this study was to assess the impact of indoor residual spraying (IRS) with pirimiphos-methyl on malaria transmission in hot spot areas. METHODS: The malaria vector population dynamics were monitored in each of the six selected villages (4 of which used IRS, 2 were unsprayed control areas) using overnight human landing catches (HLC) and pyrethrum spray catches (PSC). The host source of blood meals from freshly fed females collected using PSC was identified using the direct ELISA method. Females caught through HLC were tested by ELISA for the detection of Plasmodium falciparum circumsporozoite protein and Anopheles gambiae complex was identified using PCR. RESULTS: Preliminary data shown that the densities of Anopheles populations were significantly lower in the sprayed areas (179/702) compared to the control. Overall, malaria transmission risk was 14 times lower in the intervention zone (0.94) compared to the control zone (12.7). In the control areas, three Anopheles species belonging to the Gambiae complex (Anopheles arabiensis, Anopheles coluzzii and Anopheles melas) maintained the transmission, while only An. coluzzii was infective in the sprayed areas. CONCLUSION: The preliminary data from this pilot study showed that IRS with the CS formulation of pirimiphos-methyl is likely very effective in reducing malaria transmission risk. However, additional studies including further longitudinal entomological surveys as well as ecological and ethological and genetical characterization of vectors species and their populations are needed to better characterize the entomological impact of indoor residual spraying with pirimiphos-methyl in the residual transmission areas of Senegal.
Asunto(s)
Anopheles/efectos de los fármacos , Insecticidas/farmacología , Malaria/prevención & control , Control de Mosquitos , Mosquitos Vectores/efectos de los fármacos , Compuestos Organotiofosforados/farmacología , Animales , Anopheles/clasificación , Anopheles/genética , Femenino , Humanos , Masculino , Control de Mosquitos/métodos , Control de Mosquitos/estadística & datos numéricos , Mosquitos Vectores/clasificación , Mosquitos Vectores/genética , Proyectos Piloto , Dinámica Poblacional , SenegalRESUMEN
BACKGROUND: The genetic diversity of Plasmodium falciparum has been extensively studied in various parts of the world. However, limited data are available from Mauritania. The present study examined and compared the genetic diversity of P. falciparum isolates in Mauritania. METHODS: Plasmodium falciparum isolates blood samples were collected from 113 patients attending health facilities in Nouakchott and Hodh El Gharbi regions. K1, Mad20 and RO33 allelic family of msp-1 gene were determined by nested PCR amplification. RESULTS: K1 family was the predominant allelic type carried alone or in association with Ro33 and Mad20 types (90%; 102/113). Out of the 113 P. falciparum samples, 93(82.3%) harboured more than one parasite genotype. The overall multiplicity of infection was 3.2 genotypes per infection. There was no significant correlation between multiplicity of infection and age of patients. A significant increase of multiplicity of infection was correlated with parasite densities. CONCLUSIONS: The polymorphism of P. falciparum populations from Mauritania was high. Infection with multiple P. falciparum clones was observed, as well as a high multiplicity of infection reflecting both the high endemicity level and malaria transmission in Mauritania.
Asunto(s)
Malaria Falciparum/parasitología , Proteína 1 de Superficie de Merozoito/genética , Plasmodium falciparum/genética , Polimorfismo Genético , Adolescente , Adulto , Niño , Preescolar , Femenino , Genotipo , Humanos , Masculino , Mauritania , Plasmodium falciparum/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Adulto JovenRESUMEN
Mosquito-borne diseases like malaria are rising globally, and improved mosquito vector surveillance is needed. Survival of Anopheles mosquitoes is key for epidemiological monitoring of malaria transmission and evaluation of vector control strategies targeting mosquito longevity, as the risk of pathogen transmission increases with mosquito age. However, the available tools to estimate field mosquito age are often approximate and time-consuming. Here, we show a rapid method that combines matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry with deep learning for mosquito age prediction. Using 2763 mass spectra from the head, legs, and thorax of 251 field-collected Anopheles arabiensis mosquitoes, we developed deep learning models that achieved a best mean absolute error of 1.74 days. We also demonstrate consistent performance at two ecological sites in Senegal, supported by age-related protein changes. Our approach is promising for malaria control and the field of vector biology, benefiting other disease vectors like Aedes mosquitoes.
Asunto(s)
Anopheles , Aprendizaje Profundo , Mosquitos Vectores , Animales , Anopheles/fisiología , Mosquitos Vectores/fisiología , Malaria/transmisión , Malaria/prevención & control , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Senegal , Espectrometría de Masas/métodos , Envejecimiento/fisiologíaRESUMEN
Urban malaria has become a challenge for most African countries due to urbanization, with increasing population sizes, overcrowding, and movement into cities from rural localities. The rapid expansion of cities with inappropriate water drainage systems, abundance of water storage habitats, coupled with recurrent flooding represents a concern for water-associated vector borne diseases, including malaria. This situation could threaten progress made towards malaria elimination in sub-Saharan countries, including Senegal, where urban malaria has presented as a threat to national elimination gains. To assess drivers of urban malaria in Senegal, a 5-month study was carried out from August to December 2019 in three major urban areas and hotspots for malaria incidence (Diourbel, Touba, and Kaolack) including the rainy season (August-October) and partly dry season (November-December). The aim was to characterize malaria vector larval habitats, vector dynamics across both seasons, and to identify the primary eco- environmental entomological factors contributing to observed urban malaria transmission. A total of 145 Anopheles larval habitats were found, mapped, and monitored monthly. This included 32 in Diourbel, 83 in Touba, and 30 in Kaolack. The number of larval habitats fluctuated seasonally, with a decrease during the dry season. In Diourbel, 22 of the 32 monitored larval habitats (68.75%) were dried out by December and considered temporary, while the remaining 10 (31.25%) were classified as permanent. In the city of Touba 28 (33.73%) were temporary habitats, and of those 57%, 71% and 100% dried up respectively by October, November, and December. However, 55 (66.27%) habitats were permanent water storage basins which persisted throughout the study. In Kaolack, 12 (40%) permanent and 18 (60%) temporary Anopheles larval habitats were found and monitored during the study. Three malaria vectors (An. arabiensis, An. pharoensis and An. funestus s.l.) were found across the surveyed larval habitats, and An. arabiensis was found in all three cities and was the only species found in the city of Diourbel, while An. arabiensis, An. pharoensis, and An. funestus s.l. were detected in the cities of Touba and Kaolack. The spatiotemporal observations of immature malaria vectors in Senegal provide evidence of permanent productive malaria vector larval habitats year-round in three major urban centers in Senegal, which may be driving high urban malaria incidence. This study aimed to assess the presence and type of anopheline larvae habitats in urban areas. The preliminary data will better inform subsequent detailed additional studies and seasonally appropriate, cost-effective, and sustainable larval source management (LSM) strategies by the National Malaria Control Programme (NMCP).
Asunto(s)
Anopheles , Ciudades , Ecosistema , Larva , Malaria , Mosquitos Vectores , Estaciones del Año , Animales , Anopheles/parasitología , Senegal/epidemiología , Malaria/epidemiología , Malaria/transmisión , Mosquitos Vectores/parasitología , Incidencia , HumanosRESUMEN
Anopheles gambiae and Anopheles coluzzii, often found in sympatry and synchronous, have undergone a premating reproductive isolation across their distribution range. However, in the Western coast of Africa, unexpected hybridization zones have been observed, and little is known about swarming behavior of these cryptic taxa. Here, we characterized the swarming behavior of An. coluzzii and An. gambiae to investigate its role in the high hybridization level in Senegal. The study was conducted in the south and central Senegal during the 2018 rainy season. Mating swarms of malaria vectors were surveyed at sunset and collected using an insect net. Meanwhile, indoor resting populations of malaria vectors were collected by pyrethrum spray catches. Upon collection, specimens were identified morphologically, and then members of the An. gambiae complex were identified at the species level by polymerase chain reaction (PCR). An. gambiae swarmed mainly over bare ground, whereas An. coluzzii were found swarming above various objects creating a dark-light contrast with the bare ground. The swarms height varied from 0.5 to 2.5 m. Swarming starting time was correlated with sunset whatever the months for both species, and generally lasted about 10 min. No mixed swarm of An. gambiae and An. coluzzii was found even in the high hybridization area. These results indicated a premating isolation between An. coluzzii and An. gambiae. However, the high hybridization rate in the sympatric area suggests that heterogamous mating is occurring, thus stressing the need for further extensive studies.
Asunto(s)
Anopheles , Malaria , Animales , Anopheles/genética , Senegal , Mosquitos Vectores , Hibridación GenéticaRESUMEN
Understanding the behavior and ecology of local malaria vectors is essential for the effectiveness of the commonly used vector-targeted malaria control tools in areas of low malaria transmission. This study was conducted to determine species composition, biting behavior and infectivity of the major Anopheles vectors of Plasmodium falciparum in low transmission settings in central Senegal. Adult mosquitoes were collected using human landing catches during 2 consecutive nights and Pyrethrum Spray Catches in 30-40 randomly selected rooms, from July 2017 to December 2018 in 3 villages. Anopheline mosquitoes were morphologically identified using conventional keys; their reproductive status assessed by ovary dissections, and a sub-sample of Anopheles gambiae s.l. were identified to species level using polymerase chain reaction (PCR). Plasmodium sporozoite infections were detected using real-time quantitative PCR. During this study 3684 Anopheles were collected of which 97% were An. gambiae s.l., 0.6% were Anopheles funestus, and 2.4% were Anopheles pharoensis. Molecular identification of 1,877 An. gambiae s.l. revealed a predominance of Anopheles arabiensis (68.7%), followed by Anopheles melas (28.8%), and Anopheles coluzzii (2.1%). The overall human-biting rate of An. gambiae s.l. was highest in the inland site of Keur Martin with 4.92 bites per person per night, while it was similar in the deltaic site, Diofior (0.51) and the coastal site, Mbine Coly (0.67). Parity rates were similar in An. arabiensis (45%) and An. melas (42%). Sporozoite infections were detected in both An. arabiensis and An. melas with the respective infection rates of 1.39% (N = 8) and 0.41% (N = 1). Results suggest that low residual malaria in central Senegal is transmitted by An. arabiensis and An. melas. Consequently, both vectors will need to be targeted as part of malaria elimination efforts in this area of Senegal.
Asunto(s)
Anopheles , Malaria , Femenino , Animales , Humanos , Anopheles/genética , Senegal , Mosquitos Vectores , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
BACKGROUND: Malaria is endemic in Senegal, with seasonal transmission, and the entire population is at risk. In recent years, high malaria incidence has been reported in urban and peri-urban areas of Senegal. An urban landscape analysis was conducted in three cities to identify the malaria transmission indicators and human behavior that may be driving the increasing malaria incidence occurring in urban environments. Specifically, mosquito vector bionomics and human sleeping behaviors including outdoor sleeping habits were assessed to guide the optimal deployment of targeted vector control interventions. METHODS: Longitudinal entomological monitoring using human landing catches and pyrethrum spray catches was conducted from May to December 2019 in Diourbel, Kaolack, and Touba, the most populous cities in Senegal after the capital Dakar. Additionally, a household survey was conducted in randomly selected houses and residential Koranic schools in the same cities to assess house structures, sleeping spaces, sleeping behavior, and population knowledge about malaria and vector control measures. RESULTS: Of the 8240 Anopheles mosquitoes collected from all the surveyed sites, 99.4% (8,191) were An. gambiae s.l., and predominantly An. arabiensis (99%). A higher number of An. gambiae s.l. were collected in Kaolack (77.7%, n = 6496) than in Diourbel and Touba. The overall mean human biting rate was 14.2 bites per person per night (b/p/n) and was higher outdoors (15.9 b/p/n) than indoors (12.5 b/p/n). The overall mean entomological inoculation rates ranged from 3.7 infectious bites per person per year (ib/p/y) in Diourbel to 40.2 ib/p/y in Kaolack. Low anthropophilic rates were recorded at all sites (average 35.7%). Of the 1202 households surveyed, about 24.3% of household members slept outdoors, except during the short rainy season between July and October, despite understanding how malaria is transmitted and the vector control measures used to prevent it. CONCLUSION: Anopheles arabiensis was the primary malaria vector in the three surveyed cities. The species showed an outdoor biting tendency, which represents a risk for the large proportion of the population sleeping outdoors. As all current vector control measures implemented in the country target endophilic vectors, these data highlight potential gaps in population protection and call for complementary tools and approaches targeting outdoor biting malaria vectors.
Asunto(s)
Anopheles , Malaria , Animales , Humanos , Malaria/epidemiología , Senegal/epidemiología , Ciudades/epidemiología , Mosquitos Vectores , EcologíaRESUMEN
An immunomodulatory role of arthropod saliva has been well documented, but evidence for an effect on Plasmodium sp. infectiousness remains controversial. Mosquito saliva may orient the immune response toward a Th2 profile, thereby priming a Th2 response against subsequent antigens, including Plasmodium. Orientation toward a Th1 versus a Th2 profile promotes IgG and IgE proliferation, respectively, where the former is crucial for the development of an efficient antiparasite immune response. Here we assessed the direct effect of mosquito bites on the density of Plasmodium falciparum asexual parasites and the prevalence of gametocytes in chronic, asymptomatic infections in a longitudinal cohort study of seasonal transmission. We additionally correlated these parasitological measures with IgE and IgG antiparasite and anti-salivary gland extract titers. The mosquito biting density was positively correlated with the asexual parasite density but not asexual parasite prevalence and was negatively correlated with gametocyte prevalence. Individual anti-salivary gland IgE titers were also negatively correlated with gametocyte carriage and were strongly positively correlated with antiparasite IgE titers, consistent with the hypothesis that mosquito bites predispose individuals to develop an IgE antiparasite response. We provide evidence that mosquito bites have an impact on asymptomatic infections and differentially so for the production of asexual and sexual parasites. An increased research focus on the immunological impact of mosquito bites during asymptomatic infections is warranted, to establish whether strategies targeting the immune response to saliva can reduce the duration of infection and the onward transmission of the parasite.
Asunto(s)
Culicidae/fisiología , Inmunoglobulina E/sangre , Inmunoglobulina G/sangre , Mordeduras y Picaduras de Insectos/complicaciones , Malaria Falciparum/parasitología , Plasmodium falciparum/fisiología , Animales , Anticuerpos Antiprotozoarios/sangre , Enfermedad Crónica , Estudios de Cohortes , Culicidae/inmunología , Familia , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/inmunología , Humanos , Mordeduras y Picaduras de Insectos/inmunología , Malaria Falciparum/sangre , Malaria Falciparum/epidemiología , Malaria Falciparum/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Senegal/epidemiologíaRESUMEN
The sibling species An. coluzzii and An. gambiae s.s. are major malaria vectors thought to be undergoing sympatric speciation with gene flow. In the absence of intrinsic post-zygotic isolation between the two taxa, speciation is thought possible through the association of assortative mating and genomic regions protected from gene flow by recombination suppression. Such genomic islands of speciation have been described in pericentromeric regions of the X, 2L and 3L chromosomes. Spatial swarm segregation plays a major role in assortative mating between sympatric populations of the two species and, given their importance for speciation, genes responsible for such pre-mating reproductive barriers are expected to be protected within divergence islands. In this study 2063 male and 266 female An. coluzzii and An. gambiae s.s. individuals from natural swarms in Burkina Faso, West Africa were sampled. These were genotyped at 16 speciation island SNPs, and characterized as non-hybrid individuals, F1 hybrids or recombinant F1+n backcrossed individuals. Their genotypes at each speciation island were associated with their participation in An. coluzzii and An. gambiae-like swarms. Despite extensive introgression between the two species, the X-island genotype of non-hybrid individuals (37.6%), F1 hybrids (0.1%) and F1+n recombinants (62.3%) of either sex perfectly associated to each swarm type. Associations between swarm type and the 3L and 2L speciation islands were weakened or broken down by introgression. The functional demonstration of a close association between spatial segregation behaviour and the X speciation island lends further support to sympatric speciation models facilitated by pericentric recombination suppression in this important species complex.
Asunto(s)
Anopheles , Animales , Anopheles/genética , Burkina Faso , Femenino , Humanos , Masculino , Mosquitos Vectores/genética , Simpatría , Cromosoma X/genéticaRESUMEN
For malaria control, the application of long-lasting insecticidal nets and indoor residual spraying has led to a significant reduction in morbidity and mortality. However, the sustainability of these gains is hampered by the increase in insecticide resistance. It is therefore judicious to evaluate new insecticide formulations. In comparison to clothianidin and deltamethrin, the efficacy and residual effect of Fludora® Fusion was evaluated using an Anopheles coluzzii laboratory and An. arabiensis wild colonies in huts from August 2016 to June 2017 on cement and mud walls. Mortality was recorded at 24, 48, 72, and 96 h post exposure. Like deltamethrin and clothianidin, Fludora® Fusion showed delayed mortality rates above the WHO's 80% threshold over a period of 11 months with the laboratory strain. With the wild strain, while residual efficacy was observed at 2 months for the three insecticides, no residual efficacy was observed at 8 months at 24 h in both substrates. However, the increased efficacy was observed with increased holding periods (72 h and 96 h). These findings suggest that Fludora® Fusion could be an alternative candidate since this duration covers the transmission period in most areas in Senegal.
RESUMEN
Widespread of insecticide resistance amongst the species of the Anopheles gambiae complex continues to threaten vector control in Senegal. In this study, we investigated the presence and evolution of the Ace-1 and Gste2 resistance genes in natural populations of Anopheles gambiae s.l., the main malaria vector in Senegal. Using historical samples collected from ten sentinel health districts, this study focused on three different years (2013, 2017, and 2018) marking the periods of shift between the main public health insecticides families (pyrethroids, carbamates, organophosphates) used in IRS to track back the evolutionary history of the resistance mutations on the Ace-1 and Gste2 loci. The results revealed the presence of four members of the Anopheles gambiae complex, with the predominance of An. arabiensis followed by An. gambiae, An. coluzzii, and An. gambiae-coluzzii hybrids. The Ace-1 mutation was only detected in An. gambiae and An. gambiae-coluzzii hybrids at low frequencies varying between 0.006 and 0.02, while the Gste2 mutation was found in all the species with a frequency ranging between 0.02 and 0.25. The Ace-1 and Gste2 genes were highly diversified with twenty-two and thirty-one different haplotypes, respectively. The neutrality tests on each gene indicated a negative Tajima's D, suggesting the abundance of rare alleles. The presence and spread of the Ace-1 and Gste2 resistance mutations represent a serious threat to of the effectiveness and the sustainability of IRS-based interventions using carbamates or organophosphates to manage the widespread pyrethroids resistance in Senegal. These data are of the highest importance to support the NMCP for evidence-based vector control interventions selection and targeting.
RESUMEN
BACKGROUND: The different taxa belonging to Anopheles gambiae complex display phenotypic differences that may impact their contribution to malaria transmission. More specifically, their susceptibility to infection, resulting from a co-evolution between parasite and vector, might be different. The aim of this study was to compare the susceptibility of M and S molecular forms of Anopheles gambiae and Anopheles arabiensis to infection by Plasmodium falciparum. METHODS: F3 progenies of Anopheles gambiae s.l. collected in Senegal were infected, using direct membrane feeding, with P. falciparum gametocyte-containing blood sampled on volunteer patients. The presence of oocysts was determined by light microscopy after 7 days, and the presence of sporozoite by ELISA after 14 days. Mosquito species and molecular forms were identified by PCR. RESULTS: The oocyst rate was significantly higher in the molecular S form (79.07%) than in the M form (57.81%, Fisher's exact test p<0.001) and in Anopheles arabiensis (55.38%, Fisher's exact test vs. S group p<0.001). Mean±s.e.m. number of oocyst was greater in the An. gambiae S form (1.72±0.26) than in the An. gambiae M form (0.64±0.04, p<0.0001) and in the An. arabiensis group (0.58±0.04, vs. S group, p<0.0001). Sporozoite rate was also higher in the molecular form S (83.52%) than in form M (50.98%, Fisher's exact test p<0.001) and Anopheles arabiensis 50.85%, Fisher's exact test vs. S group p<0.001). CONCLUSION: Infected in the same experimental conditions, the molecular form S of An. gambiae is more susceptible to infection by P. falciparum than the molecular form M of An. gambiae and An. arabiensis.
Asunto(s)
Anopheles/clasificación , Anopheles/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/aislamiento & purificación , Adulto , Animales , Anopheles/genética , Estudios Transversales , Ensayo de Inmunoadsorción Enzimática , Femenino , Genotipo , Humanos , Microscopía , Polimorfismo de Longitud del Fragmento de Restricción , Conejos , SenegalRESUMEN
BACKGROUND: Various methods have been studied as replacement of human landing catches (HLC) for mosquito sampling in entomological studies on malaria transmission. Conflicting results have been obtained in comparing relative efficiency of alternative methods, according to the area, the species present and their density. The aim of this study was to compare the number and characteristics of mosquitoes sampled in two areas of Senegal by three different methods: HLC, light traps adjacent to an occupied bed net (LT/N), pyrethrum spray catches (PSC). METHODS: Collections were performed in two villages: Dielmo (Soudan savanna) and Bandafassi (Soudan Guinean savanna), two or three nights per month for a 4-5 months period during the maximal transmission season in 2001-2002. Species were identified and Plasmodium infection determined by ELISA. The specific composition, circumsporozoite protein rate and entomological inoculation rate were calculated. RESULTS: The diversity of mosquito species captured was maximal with LT/N, minimal with PSC. The mean number of anopheles captures each night was significantly different according to the method used and the species. PSC displayed a significantly lower anopheles density. HLC was the most efficient sampling method when Anopheles gambiae was the main vector (in Bandafassi); LT/N when it was Anopheles funestus (in Dielmo). A significant correlation was found between HLC and LT/M but correlation parameters were different according to the species. Circumsporozoite protein rates were not significantly different between methods or species. The entomological inoculation rate varied along with vector density and thus with methods and species. CONCLUSIONS: The choice of sampling method influenced entomological data recorded. Therefore, the sampling technique has to be chosen according to the vector studied and the aim of the study. Only HLC must be considered as the reference method, but in some conditions LT/N can be used as an alternative method.