Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cardiovasc Res ; 75(3): 498-509, 2007 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-17512504

RESUMEN

OBJECTIVE: Dilated cardiomyopathy (DCM) leads to dilation of the cardiac chambers and congestive heart failure. Recent reports have associated mutations in the SCN5A gene, which codes for the major cardiac sodium channel Nav1.5, with DCM. Although DCM is the most common form of cardiomyopathy, no animal studies have established this functional connection. METHODS AND RESULTS: We have produced transgenic mice that ectopically express the transcriptional repressor Snail in heart. These animals display severe DCM, ECG abnormalities, conduction defects, revealed by voltage-sensitive dye imaging, and significantly reduced voltage-gated sodium current as measured by patch clamping. There is a concomitant decrease in expression of the major cardiac sodium channel gene Scn5a, which we show by gene reporter assays and electrophoretic mobility shift assays is a direct target of Snail. CONCLUSIONS: Our findings indicate that a decrease in Scn5a expression and significant reduction in sodium current can result in DCM, and support the hypothesis that some mutations in the human SCN5A gene can lead to DCM.


Asunto(s)
Cardiomiopatía Dilatada/etiología , Modelos Animales , Proteínas Musculares/genética , Miocitos Cardíacos/metabolismo , Canales de Sodio/genética , Animales , Bloqueo de Rama/etiología , Bloqueo de Rama/metabolismo , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/fisiopatología , Ecocardiografía , Electrocardiografía , Ensayo de Cambio de Movilidad Electroforética , Electrofisiología , Expresión Génica , Genotipo , Ratones , Ratones Transgénicos , Proteínas Musculares/fisiología , Canal de Sodio Activado por Voltaje NAV1.5 , Técnicas de Placa-Clamp , Fenotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales de Sodio/fisiología
2.
Am J Physiol Heart Circ Physiol ; 294(2): H736-49, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18024550

RESUMEN

Sphingosine-1-phosphate (S1P) induces a transient bradycardia in mammalian hearts through activation of an inwardly rectifying K(+) current (I(K(ACh))) in the atrium that shortens action potential duration (APD) in the atrium. We have investigated probable mechanisms and receptor-subtype specificity for S1P-induced negative inotropy in isolated adult mouse ventricular myocytes. Activation of S1P receptors by S1P (100 nM) reduced cell shortening by approximately 25% (vs. untreated controls) in field-stimulated myocytes. S1P(1) was shown to be involved by using the S1P(1)-selective agonist SEW2871 on myocytes isolated from S1P(3)-null mice. However, in these myocytes, S1P(3) can modulate a somewhat similar negative inotropy, as judged by the effects of the S1P(1) antagonist VPC23019. Since S1P(1) activates G(i) exclusively, whereas S1P(3) activates both G(i) and G(q), these results strongly implicate the involvement of mainly G(i). Additional experiments using the I(K(ACh)) blocker tertiapin demonstrated that I(K(ACh)) can contribute to the negative inotropy following S1P activation of S1P(1) (perhaps through G(ibetagamma) subunits). Mathematical modeling of the effects of S1P on APD in the mouse ventricle suggests that shortening of APD (e.g., as induced by I(K(ACh))) can reduce L-type calcium current and thus can decrease the intracellular Ca(2+) concentration ([Ca(2+)](i)) transient. Both effects can contribute to the observed negative inotropic effects of S1P. In summary, these findings suggest that the negative inotropy observed in S1P-treated adult mouse ventricular myocytes may consist of two distinctive components: 1) one pathway that acts via G(i) to reduce L-type calcium channel current, blunt calcium-induced calcium release, and decrease [Ca(2+)](i); and 2) a second pathway that acts via G(i) to activate I(K(ACh)) and reduce APD. This decrease in APD is expected to decrease Ca(2+) influx and reduce [Ca(2+)](i) and myocyte contractility.


Asunto(s)
Lisofosfolípidos/farmacología , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Esfingosina/análogos & derivados , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo L/metabolismo , Depresión Química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/fisiología , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/efectos de los fármacos , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Modelos Estadísticos , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Receptores Acoplados a Proteínas G/fisiología , Receptores de Lisoesfingolípidos/efectos de los fármacos , Receptores de Lisoesfingolípidos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Esfingosina/farmacología
3.
Am J Physiol Heart Circ Physiol ; 285(5): H1837-48, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12869373

RESUMEN

Consistent differences in K+ currents in left and right atria of adult mouse hearts have been identified by the application of current- and voltage-clamp protocols to isolated single myocytes. Left atrial myocytes had a significantly (P < 0.05) larger peak outward K+ current density than myocytes from the right atrium. Detailed analysis revealed that this difference was due to the rapidly activating sustained K+ current, which is inhibited by 100 muM 4-aminopyridine (4-AP); this current was almost three times larger in the left atrium than in the right atrium. Accordingly, 100 muM 4-AP caused a significantly (P < 0.05) larger increase in action potential duration in left than in right atrial myocytes. Inward rectifier K+ current density was also significantly (P < 0.05) larger in left atrial myocytes. There was no difference in the voltage-dependent L-type Ca2+ current between left and right atria. As expected from this voltage-clamp data, the duration of action potentials recorded from single myocytes was significantly (P < 0.05) shorter in myocytes from left atria, and left atrial tissue was found to have a significantly (P < 0.05) shorter effective refractory period than right atrial tissue. These results reveal similarities between mice and other mammalian species where the left atrium repolarizes more quickly than the right, and provide new insight into cellular electrophysiological mechanisms responsible for this difference. These findings, and previous results, suggest that the atria of adult mice may be a suitable model for detailed studies of atrial electrophysiology and pharmacology under control conditions and in the context of induced atrial rhythm disturbances.


Asunto(s)
Potenciales de Acción/fisiología , Miocardio/metabolismo , Miocitos Cardíacos/fisiología , Potasio/metabolismo , Factores de Edad , Animales , Atrios Cardíacos/citología , Atrios Cardíacos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio/citología , Canales de Potasio/metabolismo
4.
Am J Physiol Heart Circ Physiol ; 286(5): H1970-7, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-14704228

RESUMEN

The effects of C-type natriuretic peptide (CNP) on heart rate and ionic currents were demonstrated by recording the ECG from adult mice and performing voltage-clamp experiments on single sinoatrial (SA) node cells isolated from mouse heart. The selective natriuretic peptide type C receptor (NPR-C) agonist cANF (10(-7) M) significantly decreased heart rate in the presence of isoproterenol (5 x 10(-9) M), as indicated by an increase in the R-R interval of ECGs obtained from Langendorff-perfused hearts. Voltage-clamp measurements in enzymatically isolated single pacemaker myocytes revealed that CNP (10(-8) M) and cANF (10(-8) M) significantly inhibited L-type Ca2+ current [ICa(L)]. These findings suggest that the CNP effect on this current is mediated by NPR-C. Further support for an NPR-C-mediated inhibition of ICa(L) in SA node myocytes was obtained by altering the functional coupling between the G protein Gi and NPR-C. In these experiments, a "Gi-activator peptide," which consists of a 17-amino acid segment of NPR-C containing a specific Gi protein-activator sequence, was dialyzed into SA node myocytes. This peptide decreased ICa(L) significantly, suggesting that NPR-C activation can result in a reduction in ICa(L) when CNP is bound and the Gi protein pathway is activated. This effect of CNP appears to be selective for ICa(L), because the hyperpolarization-activated current was unaffected by CNP or cANF. These results provide the first demonstration that CNP has a negative chronotropic effect on heart rate and suggest that this effect is mediated by selectively activating NPR-C and reducing ICa(L) through coupling to Gi protein.


Asunto(s)
Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo L/fisiología , Guanilato Ciclasa/fisiología , Péptido Natriurético Tipo-C/farmacología , Receptores del Factor Natriurético Atrial/fisiología , Nodo Sinoatrial/metabolismo , Animales , Conductividad Eléctrica , Electrocardiografía , Guanilato Ciclasa/química , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Fragmentos de Péptidos/farmacología , Receptores del Factor Natriurético Atrial/agonistas , Receptores del Factor Natriurético Atrial/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA