Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(25): e2322765121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38865263

RESUMEN

Antiviral RNA interference (RNAi) is conserved from yeasts to mammals. Dicer recognizes and cleaves virus-derived double-stranded RNA (dsRNA) and/or structured single-stranded RNA (ssRNA) into small-interfering RNAs, which guide effector Argonaute to homologous viral RNAs for digestion and inhibit virus replication. Thus, Argonaute is believed to be essential for antiviral RNAi. Here, we show Argonaute-independent, Dicer-dependent antiviral defense against dsRNA viruses using Cryphonectria parasitica (chestnut blight fungus), which is a model filamentous ascomycetous fungus and hosts a variety of viruses. The fungus has two dicer-like genes (dcl1 and dcl2) and four argonaute-like genes (agl1 to agl4). We prepared a suite of single to quadruple agl knockout mutants with or without dcl disruption. We tested these mutants for antiviral activities against diverse dsRNA viruses and ssRNA viruses. Although both DCL2 and AGL2 worked as antiviral players against some RNA viruses, DCL2 without argonaute was sufficient to block the replication of other RNA viruses. Overall, these results indicate the existence of a Dicer-alone defense and different degrees of susceptibility to it among RNA viruses. We discuss what determines the great difference in susceptibility to the Dicer-only defense.


Asunto(s)
Virus ARN , Ribonucleasa III , Ribonucleasa III/metabolismo , Ribonucleasa III/genética , Virus ARN/inmunología , Virus ARN/genética , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Ascomicetos/virología , Interferencia de ARN , Replicación Viral/genética , ARN Viral/metabolismo , ARN Viral/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , ARN Bicatenario/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(25): e2318150121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38865269

RESUMEN

It is extremely rare that a single virus crosses host barriers across multiple kingdoms. Based on phylogenetic and paleovirological analyses, it has previously been hypothesized that single members of the family Partitiviridae could cross multiple kingdoms. Partitiviridae accommodates members characterized by their simple bisegmented double-stranded RNA genome; asymptomatic infections of host organisms; the absence of an extracellular route for entry in nature; and collectively broad host range. Herein, we show the replicability of single fungal partitiviruses in three kingdoms of host organisms: Fungi, Plantae, and Animalia. Betapartitiviruses of the phytopathogenic fungusRosellinia necatrix could replicate in protoplasts of the carrot (Daucus carota), Nicotiana benthamiana and Nicotiana tabacum, in some cases reaching a level detectable by agarose gel electrophoresis. Moreover, betapartitiviruses showed more robust replication than the tested alphapartitiviruses. One of the fungal betapartitiviruses, RnPV18, could persistently and stably infect carrot plants regenerated from virion-transfected protoplasts. Both alpha- and betapartitiviruses, although with different host preference, could replicate in two insect cell lines derived from the fall armyworm Spodoptera frugiperda and the fruit fly Drosophila melanogaster. Our results indicate the replicability of single partitiviruses in members of three kingdoms and provide insights into virus adaptation, host jumping, and evolution.


Asunto(s)
Daucus carota , Nicotiana , Replicación Viral , Animales , Nicotiana/virología , Nicotiana/microbiología , Daucus carota/virología , Daucus carota/microbiología , Virus ARN/genética , Virus ARN/fisiología , Virus Fúngicos/genética , Virus Fúngicos/clasificación , Virus Fúngicos/fisiología , Filogenia , Protoplastos/virología , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/microbiología , Spodoptera/virología , Spodoptera/microbiología
3.
Proc Natl Acad Sci U S A ; 121(12): e2319582121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38483998

RESUMEN

The presence of viruses that spread to both plant and fungal populations in nature has posed intriguingly scientific question. We found a negative-strand RNA virus related to members of the family Phenuiviridae, named Valsa mali negative-strand RNA virus 1 (VmNSRV1), which induced strong hypovirulence and was prevalent in a population of the phytopathogenic fungus of apple Valsa canker (Valsa mali) infecting apple orchards in the Shaanxi Province of China. Intriguingly, VmNSRV1 encodes a protein with a viral cell-to-cell movement function in plant tissue. Mechanical leaf inoculation showed that VmNSRV1 could systemically infect plants. Moreover, VmNSRV1 was detected in 24 out of 139 apple trees tested in orchards in Shaanxi Province. Fungal inoculation experiments showed that VmNSRV1 could be bidirectionally transmitted between apple plants and V. mali, and VmNSRV1 infection in plants reduced the development of fungal lesions on leaves. Additionally, the nucleocapsid protein encoded by VmNSRV1 is associated with and rearranged lipid droplets in both fungal and plant cells. VmNSRV1 represents a virus that has adapted and spread to both plant and fungal hosts and shuttles between these two organisms in nature (phyto-mycovirus) and is potential to be utilized for the biocontrol method against plant fungal diseases. This finding presents further insights into the virus evolution and adaptation encompassing both plant and fungal hosts.


Asunto(s)
Ascomicetos , Virus Fúngicos , Malus , Micosis , Virus ARN , Ascomicetos/genética , Virus ARN/genética , Enfermedades de las Plantas/microbiología , Malus/metabolismo
4.
Environ Microbiol ; 26(2): e16583, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38350655

RESUMEN

The globally distributed basidiomycete genus Armillaria includes wood decomposers that can act as opportunistic parasites, causing deadly root rot on woody plants. To test whether RNA viruses are involved in this opportunistic behaviour, a large isolate collection of five Armillaria species collected over 40 years in Switzerland from trees, dead wood and soil was analysed. De novo assembly of RNA-Seq data revealed 21 viruses, 14 of which belong to putative new species. Two dsRNA viruses and an unclassified Tymovirales are formally described for the first time for Armillaria. One mitovirus occurred with a high prevalence of 71.1%, while all other viruses were much less prevalent (0.6%-16.9%). About half of all viruses were found only in one fungal species, others occurred in 2-6 fungal species. Co-infections of 2-7 viruses per isolate were not uncommon (34.9%), and most viruses persisted circulating within fungal populations for decades. Some viruses were related to viruses associated with other Armillaria species, supporting the hypothesis that virus transmission can occur between different fungal species. Although no specific correlation between viruses and the fungal trophic strategy was found, this study opens new insights into viral diversity hidden in the soil microbiome.


Asunto(s)
Armillaria , Parásitos , Virus ARN , Animales , Armillaria/genética , Árboles , Parásitos/genética , ARN , Suelo , Viroma/genética , Virus ARN/genética , ARN Viral/genética
5.
Arch Virol ; 169(8): 166, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995418

RESUMEN

The virus family Phenuiviridae (order Hareavirales, comprising segmented negative-sense single stranded RNA viruses) has highly diverse members that are known to infect animals, plants, protozoans, and fungi. In this study, we identified a novel phenuivirus infecting a strain of the entomopathogenic fungus Cordyceps javanica isolated from a small brown plant hopper (Laodelphax striatellus), and this virus was tentatively named "Cordyceps javanica negative-strand RNA virus 1" (CjNRSV1). The CjNRSV1 genome consists of three negative-sense single stranded RNA segments (RNA1-3) with lengths of 7252, 2401, and 1117 nt, respectively. The 3'- and 5'-terminal regions of the RNA1, 2, and 3 segments have identical sequences, and the termini of the RNA segments are complementary to each other, reflecting a common characteristic of viruses in the order Hareavirales. RNA1 encodes a large protein (∼274 kDa) containing a conserved domain for the bunyavirus RNA-dependent RNA polymerase (RdRP) superfamily, with 57-80% identity to the RdRP encoded by phenuiviruses in the genus Laulavirus. RNA2 encodes a protein (∼79 kDa) showing sequence similarity (47-63% identity) to the movement protein (MP, a plant viral cell-to-cell movement protein)-like protein (MP-L) encoded by RNA2 of laulaviruses. RNA3 encodes a protein (∼28 kDa) with a conserved domain of the phenuivirid nucleocapsid protein superfamily. Phylogenetic analysis using the RdRPs of various phenuiviruses and other unclassified phenuiviruses showed CjNRSV1 to be grouped with established members of the genus Laulavirus. Our results suggest that CjNRSV1 is a novel fungus-infecting member of the genus Laulavirus in the family Phenuiviridae.


Asunto(s)
Cordyceps , Genoma Viral , Filogenia , ARN Viral , Cordyceps/genética , ARN Viral/genética , Virus Fúngicos/clasificación , Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , Proteínas Virales/genética , Virus ARN de Sentido Negativo/genética , Virus ARN de Sentido Negativo/clasificación , ARN Polimerasa Dependiente del ARN/genética , Virus ARN/genética , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , Secuencia de Aminoácidos , Sistemas de Lectura Abierta
6.
Phytopathology ; 114(5): 1020-1027, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38114080

RESUMEN

Invasive fungal diseases represent a major threat to forest ecosystems worldwide. As the application of fungicides is often unfeasible and not a sustainable solution, only a few other control options are available, including biological control. In this context, the use of parasitic mycoviruses as biocontrol agents of fungal pathogens has recently gained particular attention. Since the 1990s, the Asian fungus Hymenoscyphus fraxineus has been causing lethal ash dieback across Europe. In the present study, we investigated the biocontrol potential of the mitovirus Hymenoscyphus fraxineus mitovirus 2 (HfMV2) previously identified in Japanese populations of the pathogen. HfMV2 could be successfully introduced via co-culturing into 16 of 105 HfMV2-free isolates. Infection with HfMV2 had contrasting effects on fungal growth in vitro, from cryptic to detrimental or beneficial. Virus-infected H. fraxineus isolates whose growth was reduced by HfMV2 showed overall a lower virulence on ash (Fraxinus excelsior) saplings as compared with their isogenic HfMV2-free lines. The results suggest that mycoviruses exist in the native populations of H. fraxineus in Asia that have the potential for biological control of ash dieback in Europe. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Ascomicetos , Fraxinus , Virus Fúngicos , Enfermedades de las Plantas , Fraxinus/microbiología , Fraxinus/virología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/prevención & control , Virus Fúngicos/fisiología , Virus Fúngicos/aislamiento & purificación , Ascomicetos/virología , Ascomicetos/fisiología , Virulencia , Control Biológico de Vectores , Agentes de Control Biológico
7.
Res Sq ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38947053

RESUMEN

The basal forebrain cholinergic system (BFCS) participates in functions that are global across the brain, such as sleep-wake cycles, but also participates in capacities that are more behaviorally and anatomically specific, including sensory perception. To better understand the underlying organization principles of the BFCS, more and higher quality anatomical data and analysis is needed. Here, we created a "virtual Basal Forebrain", combining data from numerous rats with cortical retrograde tracer injections into a common 3D reference coordinate space and developed a "spatial density correlation" methodology to analyze patterns in BFCS cortical projection targets, revealing that the BFCS is organized into three principal networks: somatosensory-motor, auditory, and visual. Within each network, clusters of cholinergic cells with increasing complexity innervate cortical targets. These networks represent hierarchically organized building blocks that may enable the BFCS to coordinate spatially selective signaling, including parallel modulation of multiple functionally interconnected yet diverse groups of cortical areas.

8.
mSphere ; : e0034524, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39072615

RESUMEN

Rhizopus microsporus is a species in the order Mucorales that is known to cause mucormycosis, but it is poorly understood as a host of viruses. Here, we examined 25 clinical strains of R. microsporus for viral infection with a conventional double-stranded RNA (dsRNA) assay using agarose gel electrophoresis (AGE) and the recently established fragmented and primer-ligated dsRNA sequencing (FLDS) protocol. By AGE, five virus-infected strains were detected. Then, full-length genomic sequences of 12 novel RNA viruses were revealed by FLDS, which were related to the families Mitoviridae, Narnaviridae, and Endornaviridae, ill-defined groups of single-stranded RNA (ssRNA) viruses with similarity to the established families Virgaviridae and Phasmaviridae, and the proposed family "Ambiguiviridae." All the characterized viruses, except a potential phasmavirid with a negative-sense RNA genome, had positive-sense RNA genomes. One virus belonged to a previously established species within the family Mitoviridae, whereas the other 11 viruses represented new species or even new genera. These results show that the fungal pathogen R. microsporus harbors diverse RNA viruses and extend our understanding of the diversity of RNA viruses in the fungal order Mucorales, division Mucoromycota. Identifying RNA viruses from clinical isolates of R. microsporus may expand the repertoire of natural therapeutic agents for mucormycosis in the future.IMPORTANCEThe diversity of mycoviruses in fungal hosts in the division Mucoromycota has been underestimated, mainly within the species Rhizopus microsporus. Only five positive-sense RNA genomes had previously been discovered in this species. Because current sequencing methods poorly complete the termini of genomes, we used fragmented and primer-ligated double-stranded RNA sequencing to acquire the full-length genomes. Eleven novel mycoviruses were detected in this study, including the first negative-sense RNA genome reported in R. microsporus. Our findings extend the understanding of the viral diversity in clinical strains of Mucoromycota, may provide insights into the pathogenesis and ecology of this fungus, and may offer therapeutic options.

9.
Viruses ; 16(7)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39066314

RESUMEN

Rice sheath blight, caused by the soil-borne fungus Rhizoctonia solani (teleomorph: Thanatephorus cucumeris, Basidiomycota), is one of the most devastating phytopathogenic fungal diseases and causes yield loss. Here, we report on a very high prevalence (100%) of potential virus-associated double-stranded RNA (dsRNA) elements for a collection of 39 fungal strains of R. solani from the rice sheath blight samples from at least four major rice-growing areas in the Philippines and a reference isolate from the International Rice Research Institute, showing different colony phenotypes. Their dsRNA profiles suggested the presence of multiple viral infections among these Philippine R. solani populations. Using next-generation sequencing, the viral sequences of the three representative R. solani strains (Ilo-Rs-6, Tar-Rs-3, and Tar-Rs-5) from different rice-growing areas revealed the presence of at least 36 viruses or virus-like agents, with the Tar-Rs-3 strain harboring the largest number of viruses (at least 20 in total). These mycoviruses or their candidates are believed to have single-stranded RNA or dsRNA genomes and they belong to or are associated with the orders Martellivirales, Hepelivirales, Durnavirales, Cryppavirales, Ourlivirales, and Ghabrivirales based on their coding-complete RNA-dependent RNA polymerase sequences. The complete genome sequences of two novel RNA viruses belonging to the proposed family Phlegiviridae and family Mitoviridae were determined.


Asunto(s)
Oryza , Filogenia , Enfermedades de las Plantas , Virus ARN , Rhizoctonia , Rhizoctonia/virología , Rhizoctonia/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Oryza/microbiología , Oryza/virología , Virus ARN/genética , Virus ARN/aislamiento & purificación , Virus ARN/clasificación , Genoma Viral , ARN Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Bicatenario/genética , Virus Fúngicos/genética , Virus Fúngicos/clasificación , Virus Fúngicos/aislamiento & purificación , Filipinas , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA