Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nature ; 599(7884): 234-238, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34759363

RESUMEN

Propane dehydrogenation (PDH) to propene is an important alternative to oil-based cracking processes, to produce this industrially important platform chemical1,2. The commercial PDH technologies utilizing Cr-containing (refs. 3,4) or Pt-containing (refs. 5-8) catalysts suffer from the toxicity of Cr(VI) compounds or the need to use ecologically harmful chlorine for catalyst regeneration9. Here, we introduce a method for preparation of environmentally compatible supported catalysts based on commercial ZnO. This metal oxide and a support (zeolite or common metal oxide) are used as a physical mixture or in the form of two layers with ZnO as the upstream layer. Supported ZnOx species are in situ formed through a reaction of support OH groups with Zn atoms generated from ZnO upon reductive treatment above 550 °C. Using different complementary characterization methods, we identify the decisive role of defective OH groups for the formation of active ZnOx species. For benchmarking purposes, the developed ZnO-silicalite-1 and an analogue of commercial K-CrOx/Al2O3 were tested in the same setup under industrially relevant conditions at close propane conversion over about 400 h on propane stream. The developed catalyst reveals about three times higher propene productivity at similar propene selectivity.

2.
Acc Chem Res ; 57(9): 1264-1274, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38592000

RESUMEN

ConspectusZinc oxide (ZnO) is a multipurpose material and finds its applications in various fields such as rubber manufacturing, medicine, food additives, electronics, etc. It has also been intensively studied in photocatalysis due to its wide band gap and environmental compatibility. Recently, heterogeneous catalysts with supported ZnOx species have attracted more and more attention for the dehydrogenation of propane (PDH) and isobutane (iBDH) present in shale/natural gas. The olefins formed in these reactions are key building blocks of the chemical industry. These reactions are also of academic importance for understanding the fundamentals of the selective activation of C-H bonds. Differently structured ZnOx species supported on zeolites, SiO2, and Al2O3 have been reported to be active for nonoxidative dehydrogenation reactions. However, the structure-activity-selectivity relationships for these catalysts remain elusive. The main difficulty stems from the preparation of catalysts containing only one kind of well-defined ZnOx species.In this Account, we describe the studies on PDH and iBDH over differently structured ZnOx species and highlight our approaches to develop catalysts with controllable ZnOx speciation relevant to their performance. Several methods, including (i) the in situ reaction of gas-phase metallic Zn atoms with OH groups on the surface of supports, (ii) one-pot hydrothermal synthesis, and (iii) impregnation/anchoring methods, have been developed/used for the tailored preparation of supported ZnOx species. The first method allows precise control of the molecular structure of ZnOx through the nature of the defective OH groups on the supports. Using this method, a series of ZnOx species ranging from isolated, binuclear to nanosized ZnOx have been successfully generated on different SiO2-based or ZrO2-based supports as demonstrated by complementary ex/in situ characterization techniques. Based on kinetic studies and detailed characterization results, the intrinsic activity (Zn-related turnover frequency) of ZnOx was found to depend on its speciation. It increases with an increasing number of Zn atoms in a ZnmOn cluster from 1 to a few atoms (less than 10) and then decreases strongly for ZnOx nanoparticles. The latter promote the formation of undesired C1-C2 hydrocarbons and coke, resulting in lower propene selectivity in comparison with the catalysts containing only ZnOx species ranging from isolated to subnanometer ZnmOn clusters. In addition, the strategy for improving the thermal stability of ZnOx species and the consequences of mass-transport limitations for DH reactions were also elucidated. The results obtained allowed us to establish the fundamentals for the targeted preparation of well-structured ZnOx species and the relationships between their structures and the DH performance. This knowledge may inspire further studies in the field of C-H bond activation and other reactions, in which ZnOx species act as catalytically active sites or promoters, such as the dehydroaromatization of light alkanes and the hydrogenation of CO2 to methanol.

3.
Angew Chem Int Ed Engl ; : e202410646, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972838

RESUMEN

Ethylene dimerization is an industrial process that is currently carried out using homogeneous catalysts. Here we present a highly active heterogeneous catalyst containing minute amounts of atomically dispersed Pd. It requires no co-catalyst(s) or activator(s) and significantly outperforms previously reported catalysts tested under similar reaction conditions. The selectivity to C4- and C6-hydrocarbons was about 80% and 10% at 42% ethylene conversion at 200°C using an industrially relevant feed containing 50 vol% ethylene, respectively. Our kinetic and catalyst characterization experiments complemented by density functional theory calculations provide molecular insights into the local environment of isolated Pd(II)Ox species and their role in achieving high activity in the target reaction. When the developed catalyst was rationally integrated with a Mo-containing olefin metathesis catalyst in the same reactor, the formed butenes reacted with ethylene to propylene with a selectivity of 98% at about 24% ethylene conversion.

4.
Angew Chem Int Ed Engl ; 63(14): e202319192, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38271543

RESUMEN

Improving the selectivity in the oxidative coupling of methane to ethane/ethylene poses a significant challenge for commercialization. The required improvements are hampered by the uncertainties associated with the reaction mechanism due to its complexity. Herein, we report about 90 % selectivity to the target products at 11 % methane conversion over Gd2O3-based catalysts at 700 °C using N2O as the oxidant. Sophisticated kinetic studies have suggested the nature of adsorbed oxygen species and their binding strength as key parameters for undesired methane oxidation to carbon oxides. These descriptors can be controlled by a metal oxide promoter for Gd2O3.

6.
Angew Chem Int Ed Engl ; 62(40): e202308872, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37427552

RESUMEN

The metathesis of ethylene with 2-butenes to propene is an established large-scale process. However, the fundamentals behind in situ transformation of supported WOx , MoOx , or ReOx species into catalytically active metal-carbenes and the intrinsic activity of the latter as well as the role of metathesis-inactive cocatalysts are still unsolved. This is detrimental for catalyst development and process optimization. In this study, we provide the required essentials derived from steady-state isotopic transient kinetic analysis. For the first time, the steady-state concentration, the lifetime, and the intrinsic reactivity of metal carbenes were determined. The obtained results can be directly used for the design and the preparation of metathesis-active catalysts and cocatalysts, thereby opening up possibilities for optimizing propene productivity.

7.
Angew Chem Int Ed Engl ; 62(49): e202310062, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37702304

RESUMEN

Knowing the structure of catalytically active species/phases and providing methods for their purposeful generation are two prerequisites for the design of catalysts with desired performance. Herein, we introduce a simple method for precise preparation of supported/bulk catalysts. It utilizes the ability of metal oxides to dissolve and to simultaneously precipitate during their treatment in an aqueous ammonia solution. Applying this method for a conventional VOx -Al2 O3 catalyst, the concentration of coordinatively unsaturated Al sites was tuned simply by changing the pH value of the solution. These sites affect the strength of V-O-Al bonds of isolated VOx species and thus the reducibility of the latter. This method is also applicable for controlling the reducibility of bulk catalysts as demonstrated for a CeO2 -ZrO2 -Al2 O3 system. The application potential of the developed catalysts was confirmed in the oxidative dehydrogenation of ethylbenzene to styrene with CO2 and in the non-oxidative propane dehydrogenation to propene. Our approach is extendable to the preparation of any metal oxide catalysts dissolvable in an ammonia solution.

8.
Chem Soc Rev ; 50(1): 473-527, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33205797

RESUMEN

Conversion of propane or butanes from natural/shale gas into propene or butenes, which are indispensable for the synthesis of commodity chemicals, is an important environmentally friendly alternative to oil-based cracking processes. Herein, we critically analyse recent developments in the non-oxidative, oxidative, and CO2-mediated dehydrogenation of propane and isobutane to the corresponding olefins over metal oxide catalysts. Particular attention is paid to (i) comparing the developed catalysts in terms of their application potential, (ii) structure-activity-selectivity relationships for tailored catalyst design, and (iii) reaction-engineering aspects for improving product selectivity and overall process efficiency. On this basis, possible directions for further research aimed at the development of inexpensive and environmentally friendly catalysts with industrially relevant performance were identified. In addition, we provide general information regarding catalyst preparation and characterization as well as some recommendations for carrying out non-oxidative and CO2-mediated dehydrogenation reactions to ensure unambiguous comparison of catalysts developed in different studies.

9.
Angew Chem Int Ed Engl ; 61(19): e202200772, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35148454

RESUMEN

The production of nitrous oxide, N2 O, via NH3 oxidation is not on a practical scale due to the lack of a suitable catalyst. Instead, it is produced via thermal decomposition of NH4 NO3 , rendering N2 O too costly and limiting its prospective uses. Herein, we report CeO2 -supported Au nanoparticles (2-3 nm) as a highly selective catalyst for low-temperature NH3 oxidation to N2 O, exhibiting two orders of magnitude higher space-time yield than the state-of-the-art Mn-Bi/α-Al2 O3 and remarkable stability over 70 h on stream. The reaction proceeds via a Mars-van Krevelen mechanism, with the density of interfacial Auδ+ species and the oxygen storage capacity of CeO2 identified as the key performance descriptors. The latter could be enhanced by cobalt doping, improving the catalytic activity and setting a new benchmark for N2 O productivity. These findings establish NH3 oxidation as an efficient process for N2 O manufacture and facilitate its broader utilization in selective oxidations.

10.
Angew Chem Int Ed Engl ; 61(22): e202116517, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35244964

RESUMEN

Alkali metal promoters have been widely employed for preparation of heterogeneous catalysts used in many industrially important reactions. However, the fundamentals of their effects are usually difficult to access. Herein, we unravel mechanistic and kinetic aspects of the role of alkali metals in CO2 hydrogenation over Fe-based catalysts through state-of-the-art characterization techniques, spatially resolved steady-state and transient kinetic analyses. The promoters affect electronic properties of iron in iron carbides. These carbide characteristics determine catalyst ability to activate H2 , CO and CO2 . The Allen scale electronegativity of alkali metal promoter was successfully correlated with the rates of CO2 hydrogenation to higher hydrocarbons and CH4 as well as with the rate constants of individual steps of CO or CO2 activation. The derived knowledge can be valuable for designing and preparing catalysts applied in other reactions where such promoters are also used.

11.
Environ Sci Technol ; 54(19): 11753-11761, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32790302

RESUMEN

The impact of formaldehyde (HCHO, formed in vehicle exhaust gases by incomplete combustion of fuel) on the performance of a commercial V2O5-WO3/TiO2 catalyst in NH3-SCR of NOx under dry conditions has been analyzed in detail by catalytic tests, in situ FTIR and transient studies using temporal analysis of products (TAP). HCHO reacts preferentially with NH3 to a formamide (HCONH2) surface intermediate. This deprives NH3 partly from its desired role as a reducing agent in the SCR and diminishes NO conversion and N2 selectivity. Between 250 and 400 °C, HCONH2 decomposes by dehydration (major pathway) and decarbonylation (minor pathway) to liberate toxic HCN and CO, respectively. HCN was proven to be oxidized by lattice oxygen of the catalyst to CO2 and NO, which enters the NH3-SCR reaction.


Asunto(s)
Amoníaco , Titanio , Catálisis , Formaldehído
12.
Angew Chem Int Ed Engl ; 54(52): 15880-3, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26566072

RESUMEN

Non-oxidative dehydrogenation of propane to propene is an established large-scale process that, however, faces challenges, particularly in catalyst development; these are the toxicity of chromium compounds, high cost of platinum, and catalyst durability. Herein, we describe the design of unconventional catalysts based on bulk materials with a certain defect structure, for example, ZrO2 promoted with other metal oxides. Comprehensive characterization supports the hypothesis that coordinatively unsaturated Zr cations are the active sites for propane dehydrogenation. Their concentration can be adjusted by varying the kind of ZrO2 promoter and/or supporting tiny amounts of hydrogenation-active metal. Accordingly designed Cu(0.05 wt %)/ZrO2 -La2 O3 showed industrially relevant activity and durability over ca. 240 h on stream in a series of 60 dehydrogenation and oxidative regeneration cycles between 550 and 625 °C.

13.
ACS Catal ; 14(14): 10913-10927, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39050904

RESUMEN

Reverse water-gas shift (RWGS) reaction has attracted much attention as a potential approach for CO2 valorization via the production of synthesis gas, especially over Fe-modified supported Cu catalysts on CeO2. However, most studies have focused solely on investigating the RWGS reaction over catalysts with high Cu and Fe loadings, thus leading to an increase in the complexity of the catalytic system and, hence, preventing the gain of any reliable information about the nature of the active sites and reaction mechanism. In this work, a CeO2-supported single-atom Cu catalyst modified with iron was synthesized and evaluated for the RWGS reaction. The catalytic results reveal a significant synergistic effect between CuCeO2 and Fe, demonstrating an activity up to three times higher than the combined catalytic activities of monometallic catalysts (Fe/CeO2 + CuCeO2) under identical conditions. Various ex situ and in situ/operando techniques are employed to unveil the concealed role of Fe in catalyst activity enhancement. The combined findings from hydrogen temperature-programmed reduction (H2-TPR) and operando electron paramagnetic resonance spectroscopy (EPR) reveal that the added Fe predominantly interacts with Cu-containing surface sites, resulting in the stabilization of higher proportions of Cu single sites. Near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) and operando EPR results unveil a synergistic interplay of Fe with Cu-containing sites and CeO x domains, efficiently enhancing both the reoxidation of Cu+ in Cu+-Ov-Ce3+ moieties and the reducibility of Ce4+ in CeO x domains under RWGS conditions. Detailed mechanistic studies reveal that the RWGS reaction predominantly proceeds via the redox mechanism.

14.
Chem Commun (Camb) ; 59(19): 2775-2778, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36786213

RESUMEN

Surface or bulk promotion of ZrO2-based catalysts with Bi2O3 facilitates the removal of lattice oxygen from ZrO2 under reductive conditions resulting in the formation of coordinatively unsaturated Zr cations. The catalysts demonstrated an industrially relevant propene yield at 600 °C. The results highlight the importance of the usage of suitable promoters for controlling catalyst performance.

15.
Adv Mater ; 35(24): e2211260, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36863934

RESUMEN

Nitrous oxide, N2 O, exhibits unique reactivity in oxidation catalysis, but the high manufacturing costs limit its prospective uses. Direct oxidation of ammonia, NH3 , to N2 O can ameliorate this issue but its implementation is thwarted by suboptimal catalyst selectivity and stability, and the lack of established structure-performance relationships. Systematic and controlled material nanostructuring offers an innovative approach for advancement in catalyst design. Herein low-valent manganese atoms stabilized on ceria, CeO2 , are discovered as the first stable catalyst for NH3 oxidation to N2 O, exhibiting two-fold higher productivity than the state-of-the-art. Detailed mechanistic, computational and kinetic studies reveal CeO2 as the mediator of oxygen supply, while undercoordinated manganese species activate O2 and facilitate N2 O evolution via NN bond formation between nitroxyl, HNO, intermediates. Synthesis via simple impregnation of a small metal quantity (1 wt%) predominantly generates isolated manganese sites, while full atomic dispersion is achieved upon redispersion of sporadic oxide nanoparticles during reaction, as confirmed by advanced microscopic analysis and electron paramagnetic resonance spectroscopy. Subsequently, manganese speciation is maintained, and no deactivation is observed over 70 h on stream. CeO2 -supported isolated transition metals emerge as a novel class of materials for N2 O production, encouraging future studies to evaluate their potential in selective catalytic oxidations at large.

16.
ACS Catal ; 13(24): 15977-15990, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38125976

RESUMEN

The development of selective catalysts for direct conversion of ammonia into nitrous oxide, N2O, will circumvent the conventional five-step manufacturing process and enable its wider utilization in oxidation catalysis. Deviating from commonly accepted catalyst design principles for this reaction, reliant on manganese oxide, we herein report an efficient system comprised of isolated chromium atoms (1 wt %) stabilized in the ceria lattice by coprecipitation. The latter, in contrast to a simple impregnation approach, ensures firm metal anchoring and results in stable and selective N2O production over 100 h on stream up to 79% N2O selectivity at full NH3 conversion. Raman, electron paramagnetic resonance, and in situ UV-vis spectroscopies reveal that chromium incorporation enhances the density of oxygen vacancies and the rate of their generation and healing. Accordingly, temporal analysis of products, kinetic studies, and atomistic simulations show lattice oxygen of ceria to directly participate in the reaction, establishing the cocatalytic role of the carrier. Coupled with the dynamic restructuring of chromium sites to stabilize intermediates of N2O formation, these factors enable catalytic performance on par with or exceeding benchmark systems. These findings demonstrate how nanoscale engineering can elevate a previously overlooked metal into a highly competitive catalyst for selective ammonia oxidation to N2O, paving the way toward industrial implementation.

17.
Nat Nanotechnol ; 17(6): 606-612, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35484211

RESUMEN

Controlling the precise atomic architecture of supported metals is central to optimizing their catalytic performance, as recently exemplified for nanostructured platinum and ruthenium systems in acetylene hydrochlorination, a key process for vinyl chloride production. This opens the possibility of building on historically established activity correlations. In this study, we derived quantitative activity, selectivity and stability descriptors that account for the metal-dependent speciation and host effects observed in acetylene hydrochlorination. To achieve this, we generated a platform of Au, Pt, Ru, Ir, Rh and Pd single atoms and nanoparticles supported on different types of carbon and assessed their evolution during synthesis and under the relevant reaction conditions. Combining kinetic, transient and chemisorption analyses with modelling, we identified the acetylene adsorption energy as a speciation-sensitive activity descriptor, further determining catalyst selectivity with respect to coke formation. The stability of the different nanostructures is governed by the interplay between single atom-support interactions and chlorine affinity, promoting metal redispersion or agglomeration, respectively.

18.
IUCrdata ; 6(Pt 12): x211332, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36337592

RESUMEN

The title compound, C4H2N2S, is a 1,3-thia-zole substituted in the 4-position by a nitrile group. In the crystal, C-H⋯N hydrogen bonds and aromatic π-π stacking inter-actions are observed.

19.
Chem Commun (Camb) ; 56(85): 13021-13024, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33000811

RESUMEN

This paper demonstrates the potential of Eu2O3 and Gd2O3 as catalysts for non-oxidative propane dehydrogenation to propene. They reveal a higher activity than the state-of-the-art bare ZrO2-based catalysts due to the higher intrinsic activity of Gdcus or Eucus in comparison with that of Zrcus (cus = coordinatively unsaturated).

20.
Nat Commun ; 10(1): 441, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30683862

RESUMEN

Decades of catalysis research have created vast amounts of experimental data. Within these data, new insights into property-performance correlations are hidden. However, the incomplete nature and undefined structure of the data has so far prevented comprehensive knowledge extraction. We propose a meta-analysis method that identifies correlations between a catalyst's physico-chemical properties and its performance in a particular reaction. The method unites literature data with textbook knowledge and statistical tools. Starting from a researcher's chemical intuition, a hypothesis is formulated and tested against the data for statistical significance. Iterative hypothesis refinement yields simple, robust and interpretable chemical models. The derived insights can guide new fundamental research and the discovery of improved catalysts. We demonstrate and validate the method for the oxidative coupling of methane (OCM). The final model indicates that only well-performing catalysts provide under reaction conditions two independent functionalities, i.e. a thermodynamically stable carbonate and a thermally stable oxide support.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA