Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(23): e2300953120, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37253015

RESUMEN

Self-healing is a bioinspired strategy to repair damaged conductors under repetitive wear and tear, thereby largely extending the life span of electronic devices. The self-healing process often demands external triggering conditions as the practical challenges for the widespread applications. Here, a compliant conductor with electrically self-healing capability is introduced by combining ultrahigh sensitivity to minor damages and reliable recovery from ultrahigh tensile deformations. Conductive features are created in a scalable and low-cost fabrication process comprising a copper layer on top of liquid metal microcapsules. The efficient rupture of microcapsules is triggered by structural damages in the copper layer under stress conditions as a result of the strong interfacial interactions. The liquid metal is selectively filled into the damaged site for the instantaneous restoration of the metallic conductivity. The unique healing mechanism is responsive to various structural degradations including microcracks under bending conditions and severe fractures upon large stretching. The compliant conductor demonstrates high conductivity of ∼12,000 S/cm, ultrahigh stretchability of up to 1,200% strain, an ultralow threshold to activate the healing actions, instantaneous electrical recovery in microseconds, and exceptional electromechanical durability. Successful implementations in a light emitting diode (LED) matrix display and a multifunctional electronic patch demonstrate the practical suitability of the electrically self-healing conductor in flexible and stretchable electronics. The developments provide a promising approach to improving the self-healing capability of compliant conductors.

2.
J Virol ; 98(3): e0150223, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38315015

RESUMEN

Capsid assembly is critical in the hepatitis B virus (HBV) life cycle, mediated by the viral core protein. Capsid assembly is the target for new anti-viral therapeutics known as capsid assembly modulators (CAMs) of which the CAM-aberrant (CAM-A) class induces aberrant shaped core protein structures and leads to hepatocyte cell death. This study aimed to identify the mechanism of action of CAM-A modulators leading to HBV-infected hepatocyte elimination where CAM-A-mediated hepatitis B surface antigen (HBsAg) reduction was evaluated in a stable HBV replicating cell line and in AAV-HBV-transduced C57BL/6, C57BL/6 SCID, and HBV-infected chimeric mice with humanized livers. Results showed that in vivo treatment with CAM-A modulators induced pronounced reductions in hepatitis B e antigen (HBeAg) and HBsAg, associated with a transient alanine amino transferase (ALT) increase. Both HBsAg and HBeAg reductions and ALT increase were delayed in C57BL/6 SCID and chimeric mice, suggesting that adaptive immune responses may indirectly contribute. However, CD8+ T cell depletion in transduced wild-type mice did not impact antigen reduction, indicating that CD8+ T cell responses are not essential. Transient ALT elevation in AAV-HBV-transduced mice coincided with a transient increase in endoplasmic reticulum stress and apoptosis markers, followed by detection of a proliferation marker. Microarray data revealed antigen presentation pathway (major histocompatibility complex class I molecules) upregulation, overlapping with the apoptosis. Combination treatment with HBV-specific siRNA demonstrated that CAM-A-mediated HBsAg reduction is dependent on de novo core protein translation. To conclude, CAM-A treatment eradicates HBV-infected hepatocytes with high core protein levels through the induction of apoptosis, which can be a promising approach as part of a regimen to achieve functional cure. IMPORTANCE: Treatment with hepatitis B virus (HBV) capsid assembly modulators that induce the formation of aberrant HBV core protein structures (CAM-A) leads to programmed cell death, apoptosis, of HBV-infected hepatocytes and subsequent reduction of HBV antigens, which differentiates CAM-A from other CAMs. The effect is dependent on the de novo synthesis and high levels of core protein.


Asunto(s)
Antivirales , Apoptosis , Regulación Viral de la Expresión Génica , Antígenos del Núcleo de la Hepatitis B , Virus de la Hepatitis B , Hepatocitos , Biosíntesis de Proteínas , Animales , Ratones , Antivirales/farmacología , Antivirales/uso terapéutico , Apoptosis/efectos de los fármacos , Cápside/química , Cápside/clasificación , Cápside/efectos de los fármacos , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Hepatitis B/tratamiento farmacológico , Hepatitis B/inmunología , Hepatitis B/metabolismo , Hepatitis B/virología , Antígenos del Núcleo de la Hepatitis B/biosíntesis , Antígenos del Núcleo de la Hepatitis B/metabolismo , Antígenos e de la Hepatitis B/metabolismo , Antígenos de Superficie de la Hepatitis B/metabolismo , Virus de la Hepatitis B/crecimiento & desarrollo , Virus de la Hepatitis B/inmunología , Virus de la Hepatitis B/metabolismo , Virus de la Hepatitis B/patogenicidad , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Hepatocitos/virología , Ratones Endogámicos C57BL , Ratones SCID , Replicación Viral , Línea Celular , Linfocitos T CD8-positivos/inmunología , Presentación de Antígeno
3.
Nano Lett ; 24(19): 5904-5912, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38700588

RESUMEN

Stretchable electroluminescent devices represent an emerging optoelectronic technology for future wearables. However, their typical construction on sub-millimeter-thick elastomers has limited moisture permeability, leading to discomfort during long-term skin attachment. Although breathable textile displays may partially address this issue, they often have distinct visual appearances with discrete emissions from fibers or fiber junctions. This study introduces a convenient procedure to create stretchable, permeable displays with continuous luminous patterns. The design utilizes ultrathin nanocomposite devices embedded in a porous elastomeric microfoam to achieve high moisture permeability. These displays also exhibit excellent deformability, low-voltage operation, and excellent durability. Additionally, the device is decorated with fluorinated silica nanoparticles to achieve self-cleaning and washable capabilities. The practical implementation of these nanocomposite devices is demonstrated by creating an epidermal counter display that allows intimate integration with the human body. These developments provide an effective design of stretchable and breathable displays for comfortable wearing.

4.
Small ; 20(23): e2305838, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38258379

RESUMEN

Interstitial fluid (ISF) is an attractive alternative to regular blood sampling for health checks and disease diagnosis. Porous microneedles (MNs) are well suited for collecting ISF in a minimally invasive manner. However, traditional methods of molding MNs from microfabricated templates involve prohibitive fabrication costs and fixed designs. To overcome these limitations, this study presents a facile and economical additive manufacturing approach to create porous MNs. Compared to traditional layerwise build sequences, direct ink drawing with nanocomposite inks can define sharp MNs with tailored shapes and achieve vastly improved fabrication efficiency. The key to this fabrication strategy is the yield-stress fluid ink that is easily formulated by dispersing silica nanoparticles into the cellulose acetate polymer solution. As-printed MNs are solidified into interconnected porous microstructure inside a coagulation bath of deionized water. The resulting MNs exhibit high mechanical strength and high porosity. This approach also allows porous MNs to be easily integrated on various substrates. In particular, MNs on filter paper substrates are highly flexible to rapidly collect ISF on non-flat skin sites. The extracted ISF is used for quantitative analysis of biomarkers, including glucose, = calcium ions, and calcium ions. Overall, the developments allow facile fabrication of porous MNs for transdermal diagnosis and therapy.


Asunto(s)
Líquido Extracelular , Tinta , Nanocompuestos , Agujas , Nanocompuestos/química , Porosidad , Líquido Extracelular/química , Animales
5.
Biol Res ; 57(1): 24, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711133

RESUMEN

Despite the record speed of developing vaccines and therapeutics against the SARS-CoV-2 virus, it is not a given that such success can be secured in future pandemics. In addition, COVID-19 vaccination and application of therapeutics remain low in developing countries. Rapid and low cost mass production of antiviral IgY antibodies could be an attractive alternative or complementary option for vaccine and therapeutic development. In this article, we rapidly produced SARS-CoV-2 antigens, immunized hens and purified IgY antibodies in 2 months after the SARS-CoV-2 gene sequence became public. We further demonstrated that the IgY antibodies competitively block RBD binding to ACE2, neutralize authentic SARS-CoV-2 virus and effectively protect hamsters from SARS-CoV-2 challenge by preventing weight loss and lung pathology, representing the first comprehensive study with IgY antibodies. The process of mass production can be easily implemented in most developing countries and hence could become a new vital option in our toolbox for combating viral pandemics. This study could stimulate further studies, optimization and potential applications of IgY antibodies as therapeutics and prophylactics for human and animals.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Pollos , Yema de Huevo , Inmunoglobulinas , SARS-CoV-2 , Animales , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/inmunología , COVID-19/prevención & control , COVID-19/inmunología , Pollos/inmunología , Cricetinae , Inmunoglobulinas/inmunología , Yema de Huevo/inmunología , Anticuerpos Antivirales/inmunología , Femenino , Mesocricetus , Vacunas contra la COVID-19/inmunología
6.
Nano Lett ; 23(23): 11174-11183, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38047765

RESUMEN

Stretchable conductive nanocomposites are essential for deformable electronic devices. These conductors currently face significant limitations, such as insufficient deformability, significant resistance changes upon stretching, and drifted properties during cyclic deformations. To tackle these challenges, we present an electrically self-healing and ultrastretchable conductor in the form of bilayer silver nanowire/liquid metal microcapsule nanocomposites. These nanocomposites utilize silver nanowires to establish their initial excellent conductivity. When the silver nanowire networks crack during stretching, the microcapsules are ruptured to release the encased liquid metal for recovering the electrical properties. This self-healing capability allows the nanocomposite to achieve ultrahigh stretchability for both uniaxial and biaxial strains, minor changes in resistance during stretching, and stable resistance after repetitive deformations. The conductors have been used to create skin-attachable electronic patches and stretchable light-emitting diode arrays with enhanced robustness. These developments provide a bioinspired strategy to enhance the performance and durability of conductive nanocomposites.

7.
Small ; 19(21): e2300386, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36823446

RESUMEN

Stretchable microsupercapacitors represent emerging miniaturized energy-storage devices for next-generation deformable electronics. Two-dimensional (2D) transition metal carbides (MXenes) are considered attractive electrode materials due to their metallic conductivity, hydrophilic surfaces, and excellent processability. Here, an ultrastretchable microsupercapacitor of interdigitated MXene microelectrodes with crumpled surface textures is created. The microsupercapacitor shows a series of attractive properties including a high specific capacitance of ≈185 mF cm-2 , ultrahigh stretchability up to 800% area strain, and ≈89.7% retention of the initial capacitance after 1000 stretch-relaxation cycles. In addition to static strains, the microsupercapacitor demonstrates robust mechanical properties to retain stable charging-discharging capability under dynamic stretching at different strain rates. A self-powering circuit system utilizes four microsupercapacitor packs to power a light-emitting diode (LED) array, which exhibits stable operations under large tensile strain and skin-attached wearable settings. The developments offer a generic design strategy to enhance the deformability of microsupercapacitors based on 2D nanomaterials.

8.
Mol Biol Rep ; 50(10): 8445-8457, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37632633

RESUMEN

BACKGROUND: The overall survival (OS) rate of adult patients suffering from acute myeloid leukaemia (AML) remains unsatisfactory at less than 40%. Current risk stratification systems fail to provide accurate guidelines for precise treatment. Novel biomarkers for predicting prognosis are urgently needed. Plexin B2 (PLXNB2), a functional receptor of angiogenin (ANG), has been found to be aberrantly expressed in multitudinous tumours. We detected overexpression of PLXNB2 mRNA in AML via transcriptome microarray analysis. This study aims to explore the potential role of PLXNB2 as a biomarker of prognosis and a prospective target of AML. METHODS: qRT‒PCR was conducted to verify the expression of PLXNB2 mRNA in bone marrow mononuclear cells from AML patients. Immunohistochemical and immunofluorescence staining were performed and confirmed increased expression of PLXNB2 protein in AML bone marrow tissues. Data on PLXNB2 expression, prognosis and clinical features were accessed from multiple bioinformatic databases, including The Cancer Genome Atlas (TCGA). Genes coexpressed and correlated with PLXNB2 were identified and analysed in the TCGA AML cohort. Metascape was applied for functional and pathway enrichment analysis of genes related to PLXNB2. Small molecular agents and traditional Chinese medicines potentially targeting genes related to PLXNB2 were screened via the Connectivity Map, TCMSP and HIT databases. RESULTS: PLXNB2 mRNA and protein levels are higher in AML samples than in normal controls. Overexpression of PLXNB2 is associated with worse OS in AML. Patients with high PLXNB2 expression might benefit more from haematopoietic stem cell transplantation (HSCT) (indicated by prolonged OS) than those with only chemotherapy treatment. Differentially expressed genes between the high and low PLXNB2 expression groups were overlapped with PLXNB2-coexpressed genes, and genes that overlapped were enriched in immune functions, endothelial cell regulation and cell interaction gene sets, indicating the potential function of PLXNB2 in AML. A total of 36 hub genes were identified from the differentially expressed genes, and MRC1, IL10, CD163 and CCL22 had significant prognostic value for AML. Analysis of the connectivity map and traditional agents revealed that honokiol, morphines, triptolide and paeoniflorin could be potential treatment regimens. CONCLUSIONS: The overexpression of PLXNB2 is an adverse prognostic factor in adult AML patients and could be used as a potential biomarker. PLXNB2 might exert an oncogenic role by modulating immune functions, endothelial cell functions and cell interactions. AML patients with high PLXNB2 expression could benefit more from HSCT.


Asunto(s)
Relevancia Clínica , Leucemia Mieloide Aguda , Adulto , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Médula Ósea/patología , Perfilación de la Expresión Génica , ARN Mensajero
9.
Nano Lett ; 22(2): 716-725, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34994567

RESUMEN

An effective method to identify c-di-GMP may significantly facilitate the exploration of its signaling pathways and bacterial pathogenesis. Herein, we have developed the first conjugated polymer-amplified RNA aptamer NanoKit with a unique core-shell-shell architecture, which combines the advantages of high selectivity of RNA aptamers and high sensitivity of strong fluorescence resonance energy transfer (FRET) effect, for precisely detecting c-di-GMP. We identified that NanoKit could selectively detect c-di-GMP with a low detection limit of 50 pM. Importantly, NanoKit could identify bacterial species and physiological states, such as planktonic, biofilm, and even antibiotic-resistance, on the basis of their different c-di-GMP expression patterns. Particularly, NanoKit could distinguish bacterial infection and inflammation and identify Pseudomonas aeruginosa associated pneumonia and sepsis, thereby guiding treatment choice and monitoring antibiotic effects. Therefore, NanoKit provides a promising strategy to rapidly identify c-di-GMP and its associated diseases and may benefit for pathophoresis management.


Asunto(s)
Aptámeros de Nucleótidos , Proteínas Bacterianas/genética , Biopelículas , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Transferencia Resonante de Energía de Fluorescencia
10.
Nano Lett ; 22(1): 135-144, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34967636

RESUMEN

Current three-dimensional (3D) cell culture systems mainly rely on static cell culture and lack the ability to thoroughly manage cell intrinsic behaviors and biological characteristics, leading to unsatisfied cell activity. Herein, we have developed photoactive 3D-printed hypertensile metamaterials based dynamic cell culture system (MetaFold) for guiding cell fate. MetaFold exhibited high elasticity and photothermal conversion efficiency due to its metapattern architecture and micro/nanoscale polydopamine coating, allowing for responding to mechanical and light stimulation to construct dynamic culture conditions. In addition, MetaFold possessed excellent cell adhesion capability and could promote cell viability and function under dynamic stimulation, thereby maximizing cell activity. Importantly, MetaFold could improve the differentiation efficacy of stem cells into cardiomyocytes and even their maturation, offering high-quality precious candidates for cell therapy. Therefore, we present a dual stimuli-responsive dynamic culture system, which provides a physiologically realistic environment for cell culture and biological study.


Asunto(s)
Impresión Tridimensional , Andamios del Tejido , Técnicas de Cultivo de Célula , Diferenciación Celular , Células Madre
11.
Bull Environ Contam Toxicol ; 110(2): 43, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36652010

RESUMEN

The continuous discharge of antibiotics into the environment poses a serious threat to the ecological environment and human health. In this study, photocatalysis and microalgae were combined to study the removal of tetracycline hydrochloride (TCH) and its photodegradation intermediates in water. The results showed that after photocatalytic treatment, the removal rate of TCH reached 80%, but the mineralization rate was only 17.7%. While Chlorella sp. alone had poor tolerance to high concentrations of TCH, the combined treatment of photocatalysis and microalgae completely removed TCH and increased the mineralization efficiency to 35.0%. Increased cell density was observed, indicating that TCH and the intermediates produced in the photocatalysis process could be utilized by algae for growth. Meanwhile, TCH degradation pathways were proposed based on Liquid Chromatograph Mass Spectrometer analysis, and the toxicity of intermediates detected was predicted using ECOSAR software, which showed that the type and quantity of highly toxic intermediates decreased significantly after subsequent algal treatment. The results demonstrate that photocatalysis and microalgae combined treatment is an efficient and eco-friendly method for the removal of antibiotics in water.


Asunto(s)
Chlorella , Microalgas , Humanos , Tetraciclina/toxicidad , Tetraciclina/metabolismo , Microalgas/metabolismo , Antibacterianos/toxicidad , Antibacterianos/metabolismo , Agua
12.
Angew Chem Int Ed Engl ; 62(26): e202305282, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37186156

RESUMEN

Tough and self-healable substrates can enable stretchable electronics long service life. However, for substrates, it still remains a challenge to achieve both high toughness and autonomous self-healing ability at room temperature. Herein, a strategy by using the combined effects between quadruple H-bonding and slidable cross-links is proposed to solve the above issues in the elastomer. The elastomer exhibits high toughness (77.3 MJ m-3 ), fracture energy (≈127.2 kJ m-2 ), and good healing efficiency (91 %) at room temperature. The superior performance is ascribed to the inter and intra crosslinking structures of quadruple H-bonding and polyrotaxanes in the dual crosslinking system. Strain-induced crystallization of PEG in polyrotaxanes also contributes to the high fracture energy of the elastomers. Furthermore, based on the dual cross-linked supramolecular elastomer, a highly stretchable and self-healable electrode containing liquid metal is also fabricated, retaining resistance stability (0.16-0.26 Ω) even at the strain of 1600 %.


Asunto(s)
Rotaxanos , Cristalización , Elastómeros , Electrodos , Electrónica
13.
Nano Lett ; 21(18): 7561-7568, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34494441

RESUMEN

In spite of the excellent electrical and electrochemical properties, two-dimensional transition metal carbide (MXene) is often limited by the high stiffness for the direct implementation in next-generation stretchable and wearable energy storage devices. The improved deformability has been achieved in ultrathin composite electrodes utilizing additives that substantially reduce the specific capacitance. Here, we demonstrate an ultrastretchable and high-performing supercapacitor based on MXene electrodes with crumpled textures. After screening on the thickness, the crumpled MXene film of ∼3 µm in thickness is identified as the optimal choice to mitigate the crack formations under large and repetitive mechanical strains. The as-prepared symmetric supercapacitor, therefore, demonstrates a high specific capacitance of ∼470 mF cm-2, ultrahigh stretchability up to 800% area strain, and >90% retention of the initial capacitance after 1000 stretch-relaxation cycles. The developments offer an attractive avenue to design stretchable electrodes based on various two-dimensional nanomaterials and their composites.

14.
J Transl Med ; 19(1): 123, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33757550

RESUMEN

BACKGROUND: As a common haematological malignancy, acute myeloid leukaemia (AML), particularly with extramedullary infiltration (EMI), often results in a high mortality rate and poor prognosis. Circular RNAs (circRNAs) regulate biological and pathogenic processes, suggesting a potential role in AML. We have previously described the overall alterations in circRNAs and their regulatory networks between patients with AML presenting with and without EMI. This study aims to find new prognostic and therapeutic targets potentially associated with AML. METHODS: qRT-PCR was performed on samples from 40 patients with AML and 15 healthy controls. The possibility of using circPLXNB2 (circRNA derived from PLXNB2) as a diagnostic and prognostic biomarker for AML was analysed with multiple statistical methods. In vitro, the function of circPLXNB2 was studied by lentivirus transfection, CCK-8 assays, flow cytometry, and Transwell experiments. Western blotting and qRT-PCR were performed to detect the expression of related proteins and genes. The distribution of circPLXNB2 in cells was observed using RNA fluorescence in situ hybridization (RNA-FISH). We also investigated the role of circPLXNB2 by establishing AML xenograft models in NOD/SCID mice. RESULTS: By analysing the results of qRT-PCR detection of clinical samples, the expression of the circPLXNB2 and PLXNB2 mRNAs were significantly increased in patients with AML, more specifically in patients with AML presenting with EMI. High circPLXNB2 expression was associated with an obviously shorter overall survival and leukaemia-free survival of patients with AML. The circPLXNB2 expression was positively correlated with PLXNB2 mRNA expression, as evidenced by Pearson's correlation analysis. RNA-FISH revealed that circPLXNB2 is mainly located in the nucleus. In vitro and in vivo, circPLXNB2 promoted cell proliferation and migration and inhibited apoptosis. Notably, circPLXNB2 also increased the expression of PLXNB2, BCL2 and cyclin D1, and reduced the expression of BAX. CONCLUSION: In summary, we validated the high expression of circPLXNB2 and PLXNB2 in patients with AML. Elevated circPLXNB2 levels were associated with poor clinical outcomes in patients with AML. Importantly, circPLXNB2 accelerated tumour growth and progression, possibly by regulating PLXNB2 expression. Our study highlights the potential of circPLXNB2 as a new prognostic predictor and therapeutic target for AML in the future.


Asunto(s)
Leucemia Mieloide Aguda , ARN Circular , Animales , Proliferación Celular , Humanos , Hibridación Fluorescente in Situ , Leucemia Mieloide Aguda/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Pronóstico
15.
Invest New Drugs ; 39(4): 961-970, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33566253

RESUMEN

Our previous studies revealed that MYCN downregulates the expression of DKK3, activates the Wnt/ß-catenin signalling pathway at the transcriptional level, and thereby promotes the development of B cell acute lymphocytic leukaemia (B-ALL) but does not affect the methylation of the DKK3 promoter. Some studies have shown that MYCN is associated with histone acetylation. We speculate that histone deacetylase inhibitors (HDACis) can inhibit the Wnt/ß-catenin signalling pathway by inhibiting MYCN and increasing the expression of DKK3. Based on previous experiments, we tested this hypothesis by analysing the changes in MYCN, DKK3 and the Wnt/ß-catenin signalling pathways in B-ALL cells after treatment with the selective HDACi chidamide. The in vitro and in vivo experiments confirmed that chidamide inhibited the expression of MYCN and increased the expression of DKK3 by inhibiting the activity of histone deacetylase, and these effects resulted in inhibition of the Wnt/ß-catenin signalling pathway and the proliferation of B-ALL cells. These findings indicate that chidamide might be used alone or in combination with other chemotherapy regimens for patients with B-ALL and thus provide a new approach to the treatment of B-ALL.


Asunto(s)
Aminopiridinas/farmacología , Benzamidas/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Vía de Señalización Wnt/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteína Proto-Oncogénica N-Myc/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Hematol Oncol ; 39(2): 222-230, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33300153

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy. Understanding of the molecular pathogenesis may lead to novel therapeutic targets. Rapamycin, the mammalian target of rapamycin (mTOR) inhibitor, showed inhibitory effects on T-ALL cells. In this study, we showed that rapamycin significantly reduced MYCN mRNA and protein in a concentration-dependent manner in T-ALL cells. Selective knockdown of MYCN by small interfering RNA had similar effects to rapamycin to inhibit T-ALL proliferation and colony formation and to induce G1-phase cell-cycle arrest and apoptosis. The inhibitory effects of rapamycin and MYCN depletion were also found in a Molt-4 xenograft model. Rapamycin and MYCN inhibition suppressed both Wnt/ß-catenin and mTOR signaling pathways. The results suggest the effects of rapamycin on adult T-ALL is likely mediated by downregulation of MYCN. The findings suggest MYCN a potential target for the treatment of adult T-ALL. Additionally, dual targeting of mTOR and Wnt/ß-catenin pathways may represent a novel strategy in the treatment of adult T-ALL.


Asunto(s)
Antibióticos Antineoplásicos/uso terapéutico , Proteína Proto-Oncogénica N-Myc/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR/genética , Vía de Señalización Wnt/genética , beta Catenina/metabolismo , Animales , Antibióticos Antineoplásicos/farmacología , Proliferación Celular , Humanos , Ratones , Ratones Endogámicos NOD , Sirolimus/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
17.
J Virol ; 93(20)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31375583

RESUMEN

Early human immunodeficiency virus type 1 (HIV-1) treatment during the acute period of infection can significantly limit the seeding of viral reservoirs and modify the course of disease. However, while a number of HIV-1 broadly neutralizing antibodies (bnAbs) have demonstrated remarkable efficacy as prophylaxis in macaques chronically infected with simian-human immunodeficiency virus (SHIV), intriguingly, their inhibitory effects were largely attenuated in the acute period of SHIV infection. To investigate the mechanism for the disparate performance of bnAbs in different periods of SHIV infection, we used LSEVh-LS-F, a bispecific bnAb targeting the CD4 binding site and CD4-induced epitopes, as a representative bnAb and assessed its potential therapeutic benefit in controlling virus replication in acutely or chronically SHIV-infected macaques. We found that a single infusion of LSEVh-LS-F resulted in rapid decline of plasma viral loads to undetectable levels without emergence of viral resistance in the chronically infected macaques. In contrast, the inhibitory effect was robust but transient in the acutely infected macaques, despite the fact that all macaques had comparable plasma viral loads initially. Infusing multiple doses of LSEVh-LS-F did not extend its inhibitory duration. Furthermore, the pharmacokinetics of the infused LSEVh-LS-F in the acutely SHIV-infected macaques significantly differed from that in the uninfected or chronically infected macaques. Host SHIV-specific immune responses may play a role in the viremia-dependent pharmacokinetics. Our results highlight the correlation between the fast clearance of infused bnAbs and the treatment failure in the acute period of SHIV infection and may have important implications for the therapeutic use of bnAbs to treat acute HIV infections.IMPORTANCE Currently, there is no bnAb-based monotherapy that has been reported to clear the virus in the acute SHIV infection period. Since early HIV treatment is considered critical to restricting the establishment of viral reservoirs, investigation into the mechanism for treatment failure in acutely infected macaques would be important for the therapeutic use of bnAbs and eventually towards the functional cure of HIV/AIDS. Here we report the comparative study of the therapeutic efficacy of a bnAb in acutely and chronically SHIV-infected macaques. This study revealed the correlation between the fast clearance of infused bnAbs and treatment failure during the acute period of infection.


Asunto(s)
Anticuerpos Antivirales/inmunología , Antivirales/farmacología , Anticuerpos ampliamente neutralizantes/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Antivirales/uso terapéutico , Interacciones Huésped-Patógeno/inmunología , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico
18.
Med Sci Monit ; 26: e923549, 2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32132521

RESUMEN

BACKGROUND Coronavirus disease 2019 (COVID-19), formerly known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and 2019 novel coronavirus (2019-nCoV), was first identified in December 2019 in Wuhan City, China. Structural equation modeling (SEM) is a multivariate analysis method to determine the structural relationship between measured variables. This observational study aimed to use SEM to determine the effects of social support on sleep quality and function of medical staff who treated patients with COVID-19 in January and February 2020 in Wuhan, China. MATERIAL AND METHODS A one-month cross-sectional observational study included 180 medical staff who treated patients with COVID-19 infection. Levels of anxiety, self-efficacy, stress, sleep quality, and social support were measured using the and the Self-Rating Anxiety Scale (SAS), the General Self-Efficacy Scale (GSES), the Stanford Acute Stress Reaction (SASR) questionnaire, the Pittsburgh Sleep Quality Index (PSQI), and the Social Support Rate Scale (SSRS), respectively. Pearson's correlation analysis and SEM identified the interactions between these factors. RESULTS Levels of social support for medical staff were significantly associated with self-efficacy and sleep quality and negatively associated with the degree of anxiety and stress. Levels of anxiety were significantly associated with the levels of stress, which negatively impacted self-efficacy and sleep quality. Anxiety, stress, and self-efficacy were mediating variables associated with social support and sleep quality. CONCLUSIONS SEM showed that medical staff in China who were treating patients with COVID-19 infection during January and February 2020 had levels of anxiety, stress, and self-efficacy that were dependent on sleep quality and social support.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus , Cuerpo Médico , Neumonía Viral , Sueño , Apoyo Social , Adulto , Ansiedad , COVID-19 , China , Estudios Transversales , Femenino , Humanos , Masculino , SARS-CoV-2 , Autoeficacia , Estrés Psicológico , Encuestas y Cuestionarios
19.
Med Sci Monit ; 26: e923921, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32194290

RESUMEN

BACKGROUND From the end of December 2019, coronavirus disease 2019 (COVID-19) began to spread in central China. Social capital is a measure of social trust, belonging, and participation. This study aimed to investigate the effects of social capital on sleep quality and the mechanisms involved in people who self-isolated at home for 14 days in January 2020 during the COVID-19 epidemic in central China. MATERIAL AND METHODS Individuals (n=170) who self-isolated at home for 14 days in central China, completed self-reported questionnaires on the third day of isolation. Individual social capital was assessed using the Personal Social Capital Scale 16 (PSCI-16) questionnaire. Anxiety was assessed using the Self-Rating Anxiety Scale (SAS) questionnaire, stress was assessed using the Stanford Acute Stress Reaction (SASR) questionnaire, and sleep was assessed using the Pittsburgh Sleep Quality Index (PSQI) questionnaire. Path analysis was performed to evaluate the relationships between a dependent variable (social capital) and two or more independent variables, using Pearson's correlation analysis and structural equation modeling (SEM). RESULTS Low levels of social capital were associated with increased levels of anxiety and stress, but increased levels of social capital were positively associated with increased quality of sleep. Anxiety was associated with stress and reduced sleep quality, and the combination of anxiety and stress reduced the positive effects of social capital on sleep quality. CONCLUSIONS During a period of individual self-isolation during the COVID-19 virus epidemic in central China, increased social capital improved sleep quality by reducing anxiety and stress.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/epidemiología , Aislamiento de Pacientes , Neumonía Viral/epidemiología , Trastornos del Sueño-Vigilia/epidemiología , Sueño/fisiología , Capital Social , Adulto , Ansiedad/complicaciones , Ansiedad/epidemiología , COVID-19 , China/epidemiología , Estudios Transversales , Depresión/complicaciones , Depresión/epidemiología , Brotes de Enfermedades , Femenino , Humanos , Masculino , SARS-CoV-2 , Apoyo Social , Encuestas y Cuestionarios
20.
J Cell Mol Med ; 22(7): 3627-3637, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29673070

RESUMEN

Dickkopf-3 (DKK3) is frequently down-regulated by promoter hypermethylation and is closely associated with a poor prognosis in many cancers. Our previous studies have shown that miR-708 down-regulates DKK3 at the post-transcriptional level in B-ALL. However, whether transcriptional mechanisms lead to DKK3 silencing remains unclear. Here, we analysed the promoter regions of DKK3 by bioinformatics and found binding sites for MYCN. A dual-luciferase reporter gene assay and ChIP experiments revealed that MYCN negatively regulates DKK3 at the transcriptional level in B-ALL cell lines, and using bisulphite sequencing PCR, we affirmed that MYCN has no effect on the methylation of the DKK3 promoter. MYCN silencing in B-ALL cells resulted in reduced cell proliferation, increased apoptosis and G1 phase arrest. Treatment with MYCN siRNA or 5-aza-2'-deoxycytidine (5-AdC), a demethylating agent, significantly increased the levels of DKK3 mRNA and protein and decreased the protein levels of p-GSK3ß and nuclear ß-catenin, which indicates inhibition of the Wnt/ß-catenin pathway in vitro. MYCN knockdown significantly decreased the tumorigenic capacity of Nalm6 cells, which restored DKK3 levels and inhibited the Wnt/ß-catenin pathway in vivo. Our study provides an increased understanding of adult B-ALL pathogenesis, which may be beneficial to the development of effective prognostic markers or therapeutic targets.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteína Proto-Oncogénica N-Myc/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Vía de Señalización Wnt/genética , beta Catenina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis/genética , Sitios de Unión , Línea Celular Tumoral , Metilación de ADN , Regulación Leucémica de la Expresión Génica , Humanos , Ratones SCID , Proteína Proto-Oncogénica N-Myc/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Regiones Promotoras Genéticas , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA