Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
PLoS Genet ; 18(1): e1010018, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35025868

RESUMEN

Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Nevertheless, the explicit signaling mechanisms governing this process have not yet been elucidated. Here, we found that conditional deletion of the Shp2 gene in mouse uterine stromal cells deferred embryo implantation and inhibited the decidualization of stromal cells, which led to embryonic developmental delay and to the death of numerous embryos mid-gestation, ultimately reducing female fertility. The absence of Shp2 in stromal cells increased the proliferation of endometrial epithelial cells, thereby disturbing endometrial epithelial remodeling. However, Shp2 deletion impaired the proliferation and polyploidization of stromal cells, which are distinct characteristics of decidualization. In human endometrial stromal cells (hESCs), Shp2 expression gradually increased during the decidualization process. Knockout of Shp2 blocked the decidual differentiation of hESCs, while Shp2 overexpression had the opposite effect. Shp2 knockout inhibited the proliferation of hESCs during decidualization. Whole gene expression profiling analysis of hESCs during the decidualization process showed that Shp2 deficiency disrupted many signaling transduction pathways and gene expression. Analyses of hESCs and mouse uterine tissues confirmed that the signaling pathways extracellular regulated protein kinases (ERK), protein kinase B (AKT), signal transducer and activator of transcription 3 (STAT3) and their downstream transcription factors CCAAT/enhancer binding protein ß (C/EBPß) and Forkhead box transcription factor O1 (FOXO-1) were involved in the Shp2 regulation of decidualization. In summary, these results demonstrate that Shp2 plays a crucial role in stromal decidualization by mediating and coordinating multiple signaling pathways in uterine stromal cells. Our discovery possibly provides a novel key regulator of embryo implantation and novel therapeutic target for pregnancy failure.


Asunto(s)
Decidua/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Útero/citología , Animales , Línea Celular , Proliferación Celular , Implantación del Embrión , Femenino , Eliminación de Gen , Perfilación de la Expresión Génica , Humanos , Ratones , Embarazo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Transducción de Señal , Células del Estroma/citología , Células del Estroma/metabolismo , Útero/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(32): e2206000119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914132

RESUMEN

Estrogen and progesterone specify the establishment of uterine receptivity mainly through their respective nuclear receptors, ER and PR. PR is transcriptionally induced by estrogen-ER signaling in the endometrium, but how the protein homeostasis of PR in the endometrium is regulated remains elusive. Here, we demonstrated that the uterine-selective depletion of P38α derails normal uterine receptivity ascribed to the dramatic down-regulation of PR protein and disordered progesterone responsiveness in the uterine stromal compartment, leading to defective implantation and female infertility. Specifically, Ube3c, an HECT family E3 ubiquitin ligase, targets PR for polyubiquitination and thus proteasome degradation in the absence of P38α. Moreover, we discovered that P38α restrains the polyubiquitination activity of Ube3c toward PR by phosphorylating the Ube3c at serine741 . In summary, we provided genetic evidence for the regulation of PR protein stability in the endometrium by P38α and identified Ube3c, whose activity was modulated by P38α-mediated phosphorylation, as an E3 ubiquitin ligase for PR in the uterus.


Asunto(s)
Implantación del Embrión , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 14 Activada por Mitógenos , Progesterona , Útero , Animales , Implantación del Embrión/fisiología , Endometrio/metabolismo , Femenino , Infertilidad Femenina , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Fosforilación , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Útero/enzimología , Útero/metabolismo
3.
J Cell Physiol ; 239(6): e31244, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38529784

RESUMEN

Maternal histone methyltransferase is critical for epigenetic regulation and development of mammalian embryos by regulating histone and DNA modifications. Here, we reported a novel mechanism by revealing the critical effects of maternal Ezh1/2 deletion on mitochondria in MII oocytes and early embryos in mice. We found that Ezh1/2 knockout in mouse MII oocytes impaired the structure of mitochondria and decreased its number, but membrane potential and respiratory function of mitochondrion were increased. The similar effects of Ezh1/2 deletion have been observed in 2-cell and morula embryos, indicating that the effects of maternal Ezh1/2 deficiency on mitochondrion extend to early embryos. However, the loss of maternal Ezh1/2 resulted in a severe defect of morula: the number, membrane potential, respiratory function, and ATP production of mitochondrion dropped significantly. Content of reactive oxygen species was raised in both MII oocytes and early embryos, suggesting maternal Ezh1/2 knockout induced oxidative stress. In addition, maternal Ezh1/2 ablation interfered the autophagy in morula and blastocyst embryos. Finally, maternal Ezh1/2 deletion led to cell apoptosis in blastocyst embryos in mice. By analyzing the gene expression profile, we revealed that maternal Ezh1/2 knockout affected the expression of mitochondrial related genes in MII oocytes and early embryos. The chromatin immunoprecipitation-polymerase chain reaction assay demonstrated that Ezh1/2 directly regulated the expression of genes Fxyd6, Adpgk, Aurkb, Zfp521, Ehd3, Sgms2, Pygl, Slc1a1, and Chst12 by H3K27me3 modification. In conclusion, our study revealed the critical effect of maternal Ezh1/2 on the structure and function of mitochondria in oocytes and early embryos, and suggested a novel mechanism underlying maternal epigenetic regulation on early embryonic development through the modulation of mitochondrial status.


Asunto(s)
Mitocondrias , Oocitos , Complejo Represivo Polycomb 2 , Animales , Femenino , Ratones , Apoptosis/genética , Autofagia/genética , Blastocisto/metabolismo , Desarrollo Embrionario/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/deficiencia , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Potencial de la Membrana Mitocondrial , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/genética , Mórula/metabolismo , Oocitos/metabolismo , Estrés Oxidativo/genética , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética , Especies Reactivas de Oxígeno/metabolismo , Histonas/metabolismo
4.
PLoS Genet ; 17(8): e1009786, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34460816

RESUMEN

The maternal recognition of pregnancy is a necessary prerequisite for gestation maintenance through prolonging the corpus luteum lifespan and ensuring progesterone production. In addition to pituitary prolactin and placental lactogens, decidual derived prolactin family members have been presumed to possess luteotropic effect. However, there was a lack of convincing evidence to support this hypothesis. Here, we unveiled an essential role of uterine Notch2 in pregnancy recognition and corpus luteum maintenance. Uterine-specific deletion of Notch2 did not affect female fertility. Nevertheless, the expression of decidual Prl8a2, a member of the prolactin family, was downregulated due to Notch2 ablation. Subsequently, we interrupted pituitary prolactin function to determine the luteotropic role of the decidua by employing the lipopolysaccharide-induced prolactin resistance model, or blocking the prolactin signaling by prolactin receptor-Fc fusion protein, or repressing pituitary prolactin release by dopamine receptor agonist bromocriptine, and found that Notch2-deficient females were more sensitive to these stresses and ended up in pregnancy loss resulting from abnormal corpus luteum function and insufficient serum progesterone level. Overexpression of Prl8a2 in Notch2 knockout mice rescued lipopolysaccharide-induced abortion, highlighting its luteotropic function. Further investigation adopting Rbpj knockout and DNMAML overexpression mouse models along with chromatin immunoprecipitation assay and luciferase analysis confirmed that Prl8a2 was regulated by the canonical Notch signaling. Collectively, our findings demonstrated that decidual prolactin members, under the control of uterine Notch signaling, assisted pituitary prolactin to sustain corpus luteum function and serum progesterone level during post-implantation phase, which was conducive to pregnancy recognition and maintenance.


Asunto(s)
Cuerpo Lúteo/metabolismo , Prolactina/metabolismo , Receptor Notch2/metabolismo , Animales , Mantenimiento del Cuerpo Lúteo/efectos de los fármacos , Decidua/metabolismo , Implantación del Embrión/fisiología , Femenino , Ratones , Hipófisis/metabolismo , Placenta/metabolismo , Embarazo , Progesterona/metabolismo , Receptor Notch2/fisiología , Útero/metabolismo
5.
Cell Tissue Res ; 388(2): 453-469, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35146559

RESUMEN

Human uterine stromal cell undergoes decidualization for pregnancy establishment and maintenance, which involved extensive proliferation and differentiation. Increasing studies have suggested that recurrent spontaneous abortion (RSA) may result from defective endometrial stromal decidualization. However, the critical molecular mechanisms underlying impaired decidualization during RSA are still elusive. By using our recently published single-cell RNA sequencing (scRNA-seq) atlas, we found that MYC-associated factor X (MAX) was significantly downregulated in the stromal cells derived from decidual tissues of women with RSA, followed by verification with immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction (qRT-PCR). MAX knockdown significantly impairs human endometrial stromal cells (HESCs) proliferation as determined by MTS assay and Ki67 immunostaining, and decidualization determined by F-actin, and decidualization markers. RNA-seq together with chromatin immunoprecipitation sequencing (ChIP-seq) and cleavage under targets and release using nuclease sequencing (CUT&RUN-seq) analysis were applied to explore the molecular mechanisms of MAX in regulation of decidualization, followed by dual-luciferase reporter assay to verify that MAX targets to (odd-skipped related transcription factor 2) OSR2 directly. Reduced expression of OSR2 was also confirmed in decidual tissues in women with RSA by IHC and qRT-PCR. OSR2 knockdown also significantly impairs HESCs decidualization. OSR2-overexpression could at least partly rescue the downregulated insulin-like growth factor binding protein 1 (IGFBP1) expression level in response to MAX knockdown. Collectively, MAX deficiency observed in RSA stromal cells not only attenuates HESCs proliferation but also impairs HESCs decidualization by downregulating OSR2 expression at transcriptional level directly.


Asunto(s)
Aborto Espontáneo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Decidua , Aborto Espontáneo/genética , Aborto Espontáneo/metabolismo , Diferenciación Celular , Endometrio/metabolismo , Femenino , Humanos , Embarazo , Células del Estroma , Factores de Transcripción/metabolismo
6.
Exp Cell Res ; 405(2): 112715, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34217714

RESUMEN

The mammalian placenta consists of a set of cells to ensure normal placental functions throughout gestation. Dysfunctional placentae are considered as the origin of a series of pregnancy complications. Therefore, it is urgent for detailed information about the molecular recipes of the cell types within the normal placenta. In the past years, gene expression analysis via single-cell RNA-seq (scRNA-seq) offers opportunities to identify new cell types in a variety of organs and tissues. In this study, scRNA-seq was used to explore the cell heterogeneity within the E10.5 mouse placenta and unravel their discrepancies in cell composition and communications. We identified sixteen cell clusters, including some cell clusters that originated from the maternal tissue. Moreover, we traced the developmental trajectories of trophoblasts and Hofbauer-like cells. Further analysis revealed cell connections between the endothelial cells and pericytes, syncytiotrophoblasts, as well as decidual cells. Besides, we highlighted several signaling pathways, such as the EGF, FGF, canonical, and non-canonical WNT signaling pathways, which mediated the potential crosstalk between different cell types within placenta. Our research provides an in-depth understanding of placental development, cellular composition, and communications at the maternal-fetal interface.


Asunto(s)
Células Endoteliales/citología , Placenta/metabolismo , Complicaciones del Embarazo/metabolismo , ARN/metabolismo , Animales , Femenino , Expresión Génica/fisiología , Perfilación de la Expresión Génica/métodos , Ratones , Embarazo , Análisis de la Célula Individual/métodos , Trofoblastos/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(33): 16621-16630, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31346081

RESUMEN

Implantation of the blastocyst into the uterus is the gateway for further embryonic development in mammals. Programming of blastocyst to an implantation-competent state known as blastocyst activation is the determining factor for implantation into the receptive uterus. However, it remains largely unclear how the blastocyst is globally programmed for implantation. Employing a delayed implantation mouse model, we show here that the blastocyst undergoes extensive programming essential for implantation. By analyzing the transcriptional profile of blastocysts with different implantation competency, we reveal the dynamic change in the biosynthesis, metabolism, and proliferation during blastocyst reactivation from diapause. We also demonstrate that reactivation of the X chromosome, one of the most important events during periimplantation of female embryonic development, is not completed even in blastocysts under conditions of dormancy, despite long term suspension in the uterus. Moreover, the mural trophectoderm (TE), but not the polar TE, differentiates to be more invasive through the weakened cell-cell tight junctions and extracellular matrices (ECMs). By analyzing the differentially expressed profile of secretory proteins, we further demonstrate that the blastocyst functions as a proinflammatory body to secrete proinflammatory signals, such as TNFα and S100A9, thereby triggering embryo-uterine attachment reaction during implantation. Collectively, our data systematically and comprehensively disclose the programming of blastocyst reactivation from diapause for implantation and uncover previously undefined roles of blastocyst during implantation.


Asunto(s)
Blastocisto/metabolismo , Implantación del Embrión/genética , Transcriptoma/genética , Cromosoma X/genética , Animales , Blastocisto/citología , Calgranulina B/genética , Calgranulina B/metabolismo , Proliferación Celular/genética , Ectodermo/metabolismo , Ectodermo/ultraestructura , Endometrio/patología , Femenino , Regulación del Desarrollo de la Expresión Génica , Inflamación/patología , Ratones , Factores de Tiempo , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba/genética
8.
BMC Biol ; 18(1): 151, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33109217

RESUMEN

BACKGROUND: Wnt signaling is a critical determinant for the maintenance and differentiation of stem/progenitor cells, including trophoblast stem cells during placental development. Hyperactivation of Wnt signaling has been shown to be associated with human trophoblast diseases. However, little is known about the impact and underlying mechanisms of excessive Wnt signaling during placental trophoblast development. RESULTS: In the present work, we observed that two inhibitors of Wnt signaling, secreted frizzled-related proteins 1 and 5 (Sfrp1 and Sfrp5), are highly expressed in the extraembryonic trophoblast suggesting possible roles in early placental development. Sfrp1 and Sfrp5 double knockout mice exhibited disturbed trophoblast differentiation in the placental ectoplacental cone (EPC), which contains the precursors of trophoblast giant cells (TGCs) and spongiotrophoblast cells. In addition, we employed mouse models expressing a truncated ß-catenin with exon 3 deletion globally and trophoblast-specifically, as well as trophoblast stem cell lines, and unraveled that hyperactivation of canonical Wnt pathway exhausted the trophoblast precursor cells in the EPC, resulting in the overabundance of giant cells at the expense of spongiotrophoblast cells. Further examination uncovered that hyperactivation of canonical Wnt pathway disturbed trophoblast differentiation in the EPC via repressing Ascl2 expression. CONCLUSIONS: Our investigations provide new insights that the homeostasis of canonical Wnt-ß-catenin signaling is essential for EPC trophoblast differentiation during placental development, which is of high clinical relevance, since aberrant Wnt signaling is often associated with trophoblast-related diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Proteínas de la Membrana/genética , Trofoblastos/metabolismo , Vía de Señalización Wnt/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Femenino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados
9.
Hum Reprod ; 35(11): 2439-2453, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33047116

RESUMEN

STUDY QUESTION: Does osteoprotegerin (OPG) promote human endometrial stromal decidualization? SUMMARY ANSWER: OPG is essential for human endometrial stromal decidualization through its interaction with syndecan-1 to decrease Akt phosphorylation. WHAT IS KNOWN ALREADY: OPG (a cytokine receptor) levels are significantly increased in the circulation of pregnant women. However, the role and mechanism of OPG in human endometrial stromal cell (ESC) decidualization remain elusive. STUDY DESIGN, SIZE, DURATION: We analyzed the endometrial expression of OPG in endometrial tissue samples collected from women with regular menstrual cycles (ranging from 25 to 35 days), and decidual tissue samples collected from woman with normal early pregnancy or recurrent pregnancy loss (RPL) who visited the Department of Gynecology and Obstetrics at a tertiary care center from January to October 2018. None of the subjects had hormonal treatment for at least 3 months prior to the procedure. In total, 16 women with normal early pregnancy and 15 with RPL were selected as subjects for this study. The function of OPG in decidualization was explored in a human endometrial stromal cell (HESC) line and primary cultures of HESCs. PARTICIPANTS/MATERIALS, SETTING, METHODS: We collected endometrial tissues (by biopsy) from the subjects during their menstrual cycle and decidual tissues from subjects with a normal early pregnancy and those with RPL at the time of dilation and curettage. The control group comprised randomly selected women who underwent termination of an apparently normal early pregnancy. The endometrial OPG expression was analyzed using immunohistochemical staining and quantitative RT-PCR (qRT-PCR). Immunofluorescence staining and western blot, and qRT-PCR were used to explore the mRNA and protein expression, respectively, of OPG in an immortalized HESC line and in primary cultures of HESC during proliferation and decidualization. siRNA-mediated knockdown experiments were performed to examine the function of OPG in HESC proliferation and decidualization. Flow cytometry and the cell proliferation MTS assay were performed to further examine the role of OPG in HESC proliferation. We also analyzed decidual marker gene expression by qRT-PCR to assess the consequences of OPG loss for HESC decidualization. A co-immunoprecipitation (IP) assay was used to determine the potential interaction between the OPG and Syndecan-1. Western blot analysis of the rescue experiments performed using the phosphatidylinositol 3-kinase (PI3K) signaling-specific inhibitor LY294002 was used to investigate the downstream signaling pathways through which OPG could mediate HESC decidualization. MAIN RESULTS AND THE ROLE OF CHANCE: OPG was expressed in both the human endometrium and in vitro decidualized ESCs. Knockdown experiments revealed that OPG loss impaired the expression of IGF-binding protein-1 (IGFBP-1) (P < 0.05) and prolactin (PRL) (P < 0.05), two specific markers of decidualization, in HESC undergoing decidualization. We also uncovered that OPG knockdown induced the aberrant activation of Akt (protein kinase B) during HESC decidualization (P < 0.05). The inhibition of Akt activation could rescue the impaired expression of the decidual markers PRL (P < 0.05) and IGFBP-1 (P < 0.05) in response to OPG knockdown. Syndecan-1 was considered a potential receptor candidate, as it was expressed in both the endometrium and in vitro cultured stromal cells. Subsequent co-IP experiments demonstrated the interaction between OPG and Syndecan-1 during decidualization. In addition, Syndecan-1 knockdown not only clearly attenuated the decidualization markers PRL (P < 0.05) and IGFBP-1 (P < 0.05) but also induced the aberrant enhancement of Akt phosphorylation in decidualized cells, consistent with the phenotype of OPG knockdown cells. Finally, we revealed that the transcript and protein expression of both OPG and Syndecan-1 was significantly lower in the decidual samples of women with RPL than in those of women with normal pregnancy (P < 0.05). LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: In this study, based on a number of approaches, it was demonstrated that OPG mediated the repression of Akt that occurs during human stromal cell decidualization, however, the molecular link between OPG and Akt signaling was not determined, and still requires further exploration. WIDER IMPLICATIONS OF THE FINDINGS: OPG is required for decidualization, and a decrease in OPG levels is associated with RPL. These findings provide a new candidate molecule for the diagnosis and potential treatment of RPL. STUDY FUNDING/COMPETING INTEREST(S): This work was supported in part by the National Natural Science Foundation of China U1605223 (to G.S.), 81701457 (to Y.J.) and 81601349 (to Y.J.). The authors have no conflicts of interest to disclose.


Asunto(s)
Decidua , Proteínas Proto-Oncogénicas c-akt , Células Cultivadas , China , Decidua/metabolismo , Endometrio/metabolismo , Femenino , Humanos , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Embarazo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células del Estroma/metabolismo , Sindecano-1/genética , Sindecano-1/metabolismo
10.
Cell Mol Life Sci ; 76(24): 4813-4828, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31352535

RESUMEN

Embryo implantation is one of the pivotal steps during mammalian pregnancy, since the quality of embryo implantation determines the outcome of ongoing pregnancy and fetal development. A large number of factors, including transcription factors, signalling transduction components, and lipids, have been shown to be indispensable for embryo implantation. Increasing evidence also suggests the important roles of epigenetic factors in this critical event. This review focuses on recent findings about the involvement of epigenetic regulators during embryo implantation.


Asunto(s)
Implantación del Embrión/genética , Epigénesis Genética/genética , Factores de Transcripción/genética , Útero/metabolismo , Animales , Blastocisto/metabolismo , Embrión de Mamíferos , Desarrollo Embrionario/genética , Femenino , Humanos , Embarazo , Transducción de Señal/genética , Útero/crecimiento & desarrollo
11.
J Med Genet ; 56(10): 678-684, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31151990

RESUMEN

BACKGROUND: Multiple morphological abnormalities of the sperm flagella (MMAF) is a kind of severe teratozoospermia. Patients with the MMAF phenotype are infertile and present aberrant spermatozoa with absent, short, coiled, bent and/or irregular flagella. Mutations in several genes can explain approximately 30%-50% of MMAF cases and more genetic pathogenies need to be explored. SPEF2 was previously demonstrated to play an essential role in sperm tail development in mice and pig. Dysfunctional mutations in SPEF2 impair sperm motility and cause a short-tail phenotype in both animal models. OBJECTIVE: Based on 42 patients with severe infertility and MMAF phenotype, we explored the new genetic cause of human MMAF phenotype. METHODS AND RESULTS: By screening gene variants in 42 patients with MMAF using whole exome sequencing, we identified the c. 12delC, c. 1745-2A > G, c. 4102 G > T and c. 4323dupA mutations in the SPEF2 gene from two patients. Both of these mutations are rare and potentially deleterious. Transmission electron microscope (TEM) analysis showed a disrupted axonemal structure with mitochondrial sheath defects in the patients' spermatozoa. The SPEF2 protein level was significantly decreased in the spermatozoa of the patients revealed by Western blot (WB) and immunofluorescence (IF) analyses. CONCLUSION: Our experimental findings indicate that loss-of-function mutations in the SPEF2 gene can cause the MMAF phenotype in human.


Asunto(s)
Anomalías Múltiples/genética , Proteínas de Ciclo Celular/genética , Infertilidad Masculina/genética , Mutación con Pérdida de Función , Anomalías Múltiples/diagnóstico por imagen , Axonema/patología , Humanos , Infertilidad Masculina/diagnóstico por imagen , Masculino , Fenotipo , Motilidad Espermática/genética , Cola del Espermatozoide/patología , Espermatozoides/patología , Secuenciación del Exoma
12.
Proc Natl Acad Sci U S A ; 114(18): 4816-4821, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28424251

RESUMEN

Estrogen and progesterone coupled with locally produced signaling molecules are essential for embryo implantation. However, the hierarchical landscape of the molecular pathways that governs this process remains largely unexplored. Here we show that the protein tyrosine phosphatase Shp2, a positive transducer of RTK signaling, is predominately localized in the nuclei in the periimplantation mouse uterus. Uterine-specific deletion of Shp2 exhibits reduced progesterone receptor (PR) expression and progesterone resistance, which derails normal uterine receptivity, leading to complete implantation failure in mice. Notably, the PR expression defects are attributed to the limited estrogen receptor α (ERα) activation in uterine stroma. Further analysis reveals that nuclear Shp2, rather than cytosolic Shp2, promotes the ERα transcription activity. This function is achieved by enhancing the Src kinase-mediated ERα tyrosine phosphorylation, which facilitates ERα binding to Pgr promoter in an ERK-independent manner in periimplantation uteri. Besides uncovering a regulatory mechanism, this study could be clinically relevant to dysfunctional ERα-caused endometrial disorders in women.


Asunto(s)
Núcleo Celular/enzimología , Implantación del Embrión/fisiología , Receptor alfa de Estrógeno/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Útero/metabolismo , Familia-src Quinasas/metabolismo , Animales , Línea Celular , Núcleo Celular/genética , Receptor alfa de Estrógeno/genética , Femenino , Humanos , Ratones , Ratones Transgénicos , Fosforilación/fisiología , Embarazo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Familia-src Quinasas/genética
13.
Biol Reprod ; 101(4): 695-703, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31347662

RESUMEN

Dingkun Pill (DK) is one of the representative traditional Chinese medicines, which has been used in the treatment of gynecological diseases for hundreds of years. Accumulative observations and evidence have shown the beneficial effects of DK, including enhancing the function of hypothalamic-pituitary-ovarian axis. However, the underlying mechanisms remain elusive. In this study, the effects of DK on uterine receptivity and implantation were explored by a series of studies with different mouse models. The results showed that DK can advance the time of implantation by influencing the expression of estrogen target genes to facilitate embryo implantation. DK was efficient to activate embryo implantation at the presence of suboptimal estrogen in delayed implantation mouse model. Our further study revealed that the improvement of DK on receptivity establishment is attributed to the differential regulation of DK on implantation-associated genes. This study provides previously unappreciated molecular mechanism of DK in embryo implantation and benefits the potential clinical application of DK in human reproduction improvement.


Asunto(s)
Medicamentos Herbarios Chinos/administración & dosificación , Implantación del Embrión/efectos de los fármacos , Medicina Tradicional China , Útero/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Endometrio/efectos de los fármacos , Endometrio/metabolismo , Endometrio/fisiología , Estrógenos/metabolismo , Femenino , Ratones , Embarazo , Receptores de Progesterona/metabolismo , Comprimidos , Útero/fisiología
14.
Biol Reprod ; 101(5): 975-985, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31359035

RESUMEN

Oxidative stress induces granulosa cell (GC) apoptosis and subsequent follicular atresia. Since our previous studies indicate that microRNA-181a (miR-181a) expression is increased in GCs undergoing apoptosis, the present study was designed to define the relationship between exposure to oxidative stressors in GCs and changes in miR-181a expression and function. To achieve this, we employed an H2O2-induced in vitro model and a 3-nitropropionic acid-induced in vivo model of ovarian oxidative stress. We demonstrated that in vitro miR-181a overexpression promoted GC apoptosis in a dose-dependent manner; sphingosine-1-phosphate (S1P) significantly reversed both H2O2-induced and miR-181a-induced apoptosis in GCs. Moreover, we identified sphingosine-1-phosphate receptor 1 (S1PR1), a critical receptor of S1P, as a novel target of miR-181a in GCs. MicroRNA-181a induced GC apoptosis by repressing S1PR1 expression in vitro. Importantly, increased miR-181a expression and decreased S1PR1 expression were detected in the in vivo ovarian oxidative stress model by Western blot analysis and immunohistochemistry. Furthermore, we found similar expression patterns of miR-181a and S1PR1 in GCs from patients with premature ovarian insufficiency. In conclusion, our results suggest that miR-181a directly suppresses expression of S1PR1, which has critical roles in mediating oxidative stress-induced GC apoptosis both in vitro and in vivo.


Asunto(s)
Apoptosis/fisiología , Células de la Granulosa/fisiología , MicroARNs/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Adenoviridae , Animales , Muerte Celular , Regulación hacia Abajo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Humanos , Peróxido de Hidrógeno/farmacología , Ratones Endogámicos ICR , MicroARNs/genética , Receptores de Esfingosina-1-Fosfato/genética
15.
Clin Genet ; 95(2): 277-286, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30298696

RESUMEN

The majority of men with defects in spermatogenesis remain undiagnosed. Acephalic spermatozoa is one of the diseases causing primary infertility. However, the causes underlying over half of affected cases remain unclear. Here, we report by whole-exome sequencing the identification of homozygous and compound heterozygous truncating mutations in PMFBP1 of two unrelated individuals with acephalic spermatozoa. PMFBP1 was highly and specifically expressed in human and mouse testis. Furthermore, immunofluorescence staining in sperm from a normal control showed that PMFBP1 localizes to the head-flagella junction region, and the absence of PMFBP1 was confirmed in patients harboring PMFBP1 mutations. In addition, we generated Pmfbp1 knock-out (KO) mice, which we found recapitulate the acephalic sperm phenotype. Label-free quantitative proteomic analysis of testicular sperm from Pmfbp1 KO and control mice showed 124 and 35 proteins, respectively, increased or decreased in sperm from KO mice compared to that found in control mice. Gene ontology analysis indicates that the biological process of Golgi vesicle transport was the most highly enriched in differentially expressed proteins, indicating process defects related to Golgi complex function may disturb formation of the head-neck junction. Collectively, our data indicate that PMFBP1 is necessary for sperm morphology in both humans and mice, and that biallelic truncating mutations in PMFBP1 cause acephalic spermatozoa.


Asunto(s)
Alelos , Proteínas del Citoesqueleto/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación , Teratozoospermia/diagnóstico , Teratozoospermia/genética , Animales , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Homocigoto , Humanos , Masculino , Ratones , Linaje , Proteoma , Análisis de Semen , Espermatozoides/metabolismo , Secuenciación del Exoma
16.
Clin Genet ; 95(5): 590-600, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30811583

RESUMEN

Multiple morphological abnormalities of flagella (MMAF) is one kind of severe teratozoospermia. Gene mutations reported in previous works only revealed the pathogenesis of approximately half of the MMAF cases, and more genetic defects in MMAF need to be explored. In the present study, we performed a genetic analysis on Han Chinese men with MMAF using whole-exome sequencing. After filtering out the cases with known gene mutations, we identified five novel mutation sites in the DNAH2 gene in three cases from three families. These mutations were validated through Sanger sequencing and absent in all control individuals. In silico analysis revealed that these DNAH2 variations are deleterious. The spermatozoa with DNAH2 mutations showed severely disarranged axonemal structures with mitochondrial sheath defection. The DNAH2 protein level was significantly decreased and inner dynein arms were absent in the spermatozoa of patients. ICSI treatment was performed for two MMAF patients with DNAH2 mutations and the associated couples successfully achieved pregnancy, indicating good nuclear quality of the sperm from the DNAH2 mutant patients. Together, these data suggest that the DNAH2 mutation can cause severe sperm flagella defects that damage sperm motility. These results provide a novel genetic pathogeny for the human MMAF phenotype.


Asunto(s)
Dineínas Axonemales/genética , Estudios de Asociación Genética , Mutación/genética , Cola del Espermatozoide/patología , Teratozoospermia/genética , Secuencia de Bases , Secuencia de Consenso , Dineínas/metabolismo , Femenino , Humanos , Masculino , Linaje , Fenotipo , Semen/metabolismo , Motilidad Espermática , Cola del Espermatozoide/ultraestructura , Secuenciación del Exoma
17.
Dev Growth Differ ; 61(2): 176-185, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30628051

RESUMEN

Ubiquitin-specific protease 7 (USP7), a member of the deubiquitinating (DUB) enzyme family, regulates protein stability and has a well-characterized function in tumorigenesis. Given its critical role in growth and development, it was speculated to be involved in modulating processes in the female reproductive system but its exact role has not been elucidated. Decidualization is one of the key processes in pregnancy and aberrant decidualization is a cause of pregnancy failure. The uterine endometrium layer undergoes significant structural and functional changes during decidualization in preparation for and after embryo implantation. Here, we hypothesized that USP7 could be involved in mediating endometrial stromal cell (ESC) decidualization and set out to determine its function with a primary stromal cell culture. Using in situ hybridization and immunohistochemical techniques, we observed increased USP7 expression during uterine decidualization and found that it was predominantly localized to the decidual zone in the post-implantation uterus. Since the ovarian hormones, progesterone (P4) and estrogen (E2), function in promoting stroma decidualization, we investigated their relationship with USP7 expression and found that they exert minimal influence. Moreover, increased USP7 expression observed during deciduoma development was found to be independent of blastocyst attachment. Using a specific USP7 inhibitor, HBX19818, we demonstrated an additional novel role for USP7 in endometrial stroma decidualization in mice during early pregnancy. Our findings could potentially be applied towards future research and development in female infertility.


Asunto(s)
Endometrio/citología , Células del Estroma/citología , Células del Estroma/enzimología , Peptidasa Específica de Ubiquitina 7/metabolismo , Animales , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Femenino , Masculino , Ratones , Peptidasa Específica de Ubiquitina 7/antagonistas & inhibidores , Peptidasa Específica de Ubiquitina 7/genética
18.
Genesis ; 56(4): e23101, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29532590

RESUMEN

Placental development is a complex and highly controlled process during which trophoblast stem cells differentiate to various trophoblast subtypes. The early embryonic death of systemic gene knockout models hampers the investigation of these genes that might play important roles during placentation. A trophoblast specific Cre mouse model would be of great help for dissecting out the potential roles of these genes during placental development. For this purpose, we generate a transgenic mouse with the Cre recombinase inserted into the endogenous locus of Elf5 gene that is expressed specifically in placental trophoblast cells. To analyze the specificity and efficiency of Cre recombinase activity in Elf5-Cre mice, we mated Elf5-Cre mice with Rosa26mT/mG reporter mice, and found that Elf5-Cre transgene is expressed specifically in the trophoectoderm as early as embryonic day 4.5 (E4.5). By E12.5, the activity of Elf5-Cre transgene was detected exclusively in all derivatives of trophoblast lineages, including spongiotrophoblast, giant cells, and labyrinth trophoblasts. In addition, Elf5-Cre transgene was also active during spermatogenesis, from spermatids to mature sperms, which is consistent with the endogenous Elf5 expression in testis. Collectively, our results provide a unique tool to delete specific genes selectively and efficiently in trophoblast lineage during placentation.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Trofoblastos/citología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Femenino , Técnicas de Sustitución del Gen/métodos , Ingeniería Genética/métodos , Técnicas Genéticas , Integrasas , Ratones , Ratones Transgénicos , Placenta/metabolismo , Embarazo , Células Madre/metabolismo , Transgenes
19.
Cell Tissue Res ; 363(2): 555-65, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26298082

RESUMEN

Successful implantation requires intimate interactions between a competent blastocyst and a receptive uterus. We recently demonstrated that the aberrant activation of opioid signaling by exogenous ligands adversely affects preimplantation embryonic development and subsequent implantation in mice. However, the underlying machinery governing the dynamic homeostasis of the endogenous opioid system in the uterus during early pregnancy remains elusive. We now show that all three major endogenous opioid precursors are spatiotemporally expressed in the uterus during early pregnancy. Moreover, we observe the well-coordinated expression of the synthetic enzyme prohormone convertases 1/3 (PC1/3) at lower levels and of its inhibitor proprotein convertase subtilisin/kexin type 1 inhibitor (Pcsk1n) and the degrading enzyme membrane metallo-endopeptidase (MME) at higher levels in the receptive uterus. Both estrogen and progestin tend to reduce the uterine levels of opioid ligand precursors in the ovariectomized mouse model. This tight regulation of the endogenous opioid system by PC1/3, Pcsk1n and MME has been further confirmed in physiologically related pseudopregnancy and delayed implantation mouse models. The coordinated regulation of opioid precursor biosynthesis and metabolism helps to create appropriate opioid signaling ensuring uterine receptivity for implantation. Thus, endogenous uterine opioid levels are primarily determined by the coordinated expressions of PC1/3, Pcsk1n and MME under the influence of ovarian progestin and estrogen. Our findings raise an additional cautionary note regarding the effects of opioid abuse on early pregnancy events.


Asunto(s)
Analgésicos Opioides/metabolismo , Implantación del Embrión , Enzimas/metabolismo , Útero/enzimología , Animales , Implantación del Embrión/efectos de los fármacos , Implantación del Embrión/genética , Estrógenos/farmacología , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Metaloendopeptidasas/metabolismo , Ratones , Embarazo , Progestinas/farmacología , Proproteína Convertasa 1/metabolismo , ARN Mensajero/genética , Útero/efectos de los fármacos
20.
Cell Tissue Res ; 365(2): 403-14, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26987819

RESUMEN

Uterine decidualization, characterized as extensive stromal cell proliferation, differentiation and polyploidization, is a crucial event for successful pregnancy and is tightly regulated by many different molecules and pathways. Prx2, an evolutionarily conserved homeobox transcription factor expressed in both embryos and adults, plays an important role during mesenchymal cell differentiation. However, it remains unclear what the exact function of Prx2 is in the uterine stromal cells, one type of mesenchymal cells. In the present study, employing in vivo and in vitro stromal cell decidualization models, combining adenovirus-mediated overexpression of Prx2, we found that the expression of Prx2 is initiated in the uterine stromal cells once the blastocyst attached to the epithelium and is always detected around the differentiated decidual zone in the anti-mesometrium of the uterus during post-implantation uterine development. Also, overexpression of Prx2 disturbed stromal-decidual differentiation, which is reflected by the decreased expression of decidual/trophoblast prolactin-related protein (Dtprp), the marker for uterine decidualization in mice. Further, we demonstrate that Prx2 overexpression disturbs lipolysis, leading to lipid droplets accumulation in uterine stromal cells, partially mediated by downregulated expression of adipocyte triglyceride lipase. Collectively, these data indicate that uterine Prx2 restrains uterine decidual differentiation through regulating lipid metabolism.


Asunto(s)
Diferenciación Celular , Decidua/citología , Decidua/metabolismo , Proteínas de Homeodominio/metabolismo , Lipólisis , Animales , Células Cultivadas , Implantación del Embrión , Femenino , Lipasa/metabolismo , Ratones , Aceites , Células del Estroma/citología , Células del Estroma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA