Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Am J Hum Genet ; 111(5): 896-912, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38653249

RESUMEN

Porokeratosis is a clonal keratinization disorder characterized by solitary, linearly arranged, or generally distributed multiple skin lesions. Previous studies showed that genetic alterations in MVK, PMVK, MVD, or FDPS-genes in the mevalonate pathway-cause hereditary porokeratosis, with skin lesions harboring germline and lesion-specific somatic variants on opposite alleles. Here, we identified non-hereditary porokeratosis associated with epigenetic silencing of FDFT1, another gene in the mevalonate pathway. Skin lesions of the generalized form had germline and lesion-specific somatic variants on opposite alleles in FDFT1, representing FDFT1-associated hereditary porokeratosis identified in this study. Conversely, lesions of the solitary or linearly arranged localized form had somatic bi-allelic promoter hypermethylation or mono-allelic promoter hypermethylation with somatic genetic alterations on opposite alleles in FDFT1, indicating non-hereditary porokeratosis. FDFT1 localization was uniformly diminished within the lesions, and lesion-derived keratinocytes showed cholesterol dependence for cell growth and altered expression of genes related to cell-cycle and epidermal development, confirming that lesions form by clonal expansion of FDFT1-deficient keratinocytes. In some individuals with the localized form, gene-specific promoter hypermethylation of FDFT1 was detected in morphologically normal epidermis adjacent to methylation-related lesions but not distal to these lesions, suggesting that asymptomatic somatic epigenetic mosaicism of FDFT1 predisposes certain skin areas to the disease. Finally, consistent with its genetic etiology, topical statin treatment ameliorated lesions in FDFT1-deficient porokeratosis. In conclusion, we identified bi-allelic genetic and/or epigenetic alterations of FDFT1 as a cause of porokeratosis and shed light on the pathogenesis of skin mosaicism involving clonal expansion of epigenetically altered cells.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Queratinocitos , Mosaicismo , Poroqueratosis , Regiones Promotoras Genéticas , Poroqueratosis/genética , Poroqueratosis/patología , Humanos , Queratinocitos/metabolismo , Queratinocitos/patología , Regiones Promotoras Genéticas/genética , Masculino , Alelos , Femenino
2.
J Hum Genet ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147823

RESUMEN

In June 2024, the Japanese government introduced a new genomic strategic action to shorten the "diagnostic odyssey" for patients with rare and intractable diseases: Six groups of rare diseases, (i) Muscle weakness group, (ii) Growth retardation, intellectual disability, and characteristic facial features group, (iii) Intellectual disability/epilepsy group, (iv) Cardiomyopathy group (mainly adult onset) (v) Proteinuria group, (vi) Fever, inflammation, skin rash, osteoarthritis group, have been newly recognized as "difficult-to-differentiate disorders" and comprehensive genomic testing can be reimbursed when patients belong to one of the six groups and certain requirements are met. The introduction of comprehensive genomic testing will improve the diagnosis rate of diseases and have significant potential to enhance Japan's rare and intractable disease policy. The new strategy in Japan and its rationale will be a reference for insurance reimbursement of comprehensive genomic testing in other countries that have universal health coverage supported by the public health insurance system.

3.
Am J Med Genet A ; 194(7): e63575, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38407561

RESUMEN

WOREE syndrome is an early infantile epileptic encephalopathy characterized by drug-resistant seizures and severe psychomotor developmental delays. We report a case of a WWOX splice-site mutation with uniparental isodisomy. A 1-year and 7-month-old girl presented with nystagmus and epileptic seizures from early infancy, with no fixation or pursuit of vision. Physical examination revealed small deformities, such as swelling of both cheeks, folded fingers, rocking feet, and scoliosis. Brain imaging revealed slight hypoplasia of the cerebrum. Electroencephalogram showed focal paroxysmal discharges during the interictal phase of seizures. Vitamin B6 and zonisamide were administered for early infantile epileptic encephalopathy; however, the seizures were not relieved. Despite altering the type and dosage of antiepileptic drugs and ACTH therapy, the seizures were intractable. Whole-exome analysis revealed the homozygosity of WWOX(NM_016373.4):c.516+1G>A. The WWOX mRNA sequencing using peripheral blood RNA confirmed that exon 5 was homozygously deleted. Based on these results, the patient was diagnosed with WOREE syndrome at 5 months. The WWOX variant found in this study is novel and has never been reported before. WOREE syndrome being extremely rare, further case series and analyses of its pathophysiology are warranted.


Asunto(s)
Mutación , Sitios de Empalme de ARN , Espasmos Infantiles , Disomía Uniparental , Oxidorreductasa que Contiene Dominios WW , Humanos , Femenino , Lactante , Oxidorreductasa que Contiene Dominios WW/genética , Espasmos Infantiles/genética , Espasmos Infantiles/tratamiento farmacológico , Espasmos Infantiles/patología , Disomía Uniparental/genética , Disomía Uniparental/patología , Sitios de Empalme de ARN/genética , Mutación/genética , Fenotipo , Secuenciación del Exoma , Electroencefalografía , Proteínas Supresoras de Tumor
4.
Am J Med Genet A ; 194(8): e63614, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38562108

RESUMEN

Sonic hedgehog signaling molecule (SHH) is a key molecule in the cilia-mediated signaling pathway and a critical morphogen in embryogenesis. The association between loss-of-function variants of SHH and holoprosencephaly is well established. In mice experiments, reduced or increased signaling of SHH have been shown to be associated with narrowing or excessive expansion of the facial midline, respectively. Herein, we report two unrelated patients with de novo truncating variants of SHH presenting with hypertelorism rather than hypotelorism. The first patient was a 13-year-old girl. Her facial features included hypertelorism, strabismus, telecanthus, malocclusion, frontal bossing, and wide widow's peak. She had borderline developmental delay and agenesis of the corpus callosum. She had a nonsense variant of SHH: Chr7(GRCh38):g.155802987C > T, NM_000193.4:c.1302G > A, p.(Trp434*). The second patient was a 25-year-old girl. Her facial features included hypertelorism and wide widow's peak. She had developmental delay and agenesis of the corpus callosum. She had a frameshift variant of SHH: Chr7(GRCh38):g.155803072_155803074delCGGinsT, NM_000193.4:c.1215_1217delCCGinsA, p.(Asp405Glufs*92). The hypertelorism phenotype contrasts sharply with the prototypical hypotelorism-holoprosencephaly phenotype associated with loss-of-function of SHH. We concluded that a subset of truncating variants of SHH could be associated with hypertelorism rather than hypotelorism.


Asunto(s)
Proteínas Hedgehog , Holoprosencefalia , Hipertelorismo , Fenotipo , Humanos , Proteínas Hedgehog/genética , Femenino , Holoprosencefalia/genética , Holoprosencefalia/patología , Adolescente , Hipertelorismo/genética , Hipertelorismo/patología , Adulto , Mutación/genética
5.
Pediatr Nephrol ; 39(8): 2347-2349, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38329589

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) can be a part of the VACTERL association, which represents the non-random combination of the following congenital anomalies: vertebral anomalies, anal anomalies, cardiac anomalies, tracheal-esophageal anomalies, kidney anomalies, and limb anomalies. VACTERL association is generally considered to be a non-genetic condition. Exceptions include a patient with a heterozygous nonsense SALL4 variant and anal stenosis, tetralogy of Fallot, sacro-vertebral fusion, and radial and thumb anomalies. SALL4 encodes a transcription factor that plays a critical role in kidney morphogenesis. Here, we report a patient with VACTERL association and a heterozygous 128-kb deletion spanning SALL4 who presented with renal hypoplasia, radial and atrio-septal defects, and patent ductus arteriosus. The present report of SALL4 deletion, in addition to a previously reported patient with VACTERL association phenotype and SALL4 nonsense mutation, further supports the notion that SALL4 haploinsufficiency can lead to VACTERL association.


Asunto(s)
Canal Anal , Esófago , Cardiopatías Congénitas , Riñón , Deformidades Congénitas de las Extremidades , Columna Vertebral , Tráquea , Factores de Transcripción , Humanos , Deformidades Congénitas de las Extremidades/genética , Deformidades Congénitas de las Extremidades/diagnóstico , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/diagnóstico , Tráquea/anomalías , Factores de Transcripción/genética , Riñón/anomalías , Esófago/anomalías , Canal Anal/anomalías , Columna Vertebral/anomalías , Masculino , Recién Nacido , Anomalías Múltiples/genética , Femenino , Haploinsuficiencia/genética
7.
Dev Neurobiol ; 84(3): 203-216, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38830696

RESUMEN

Formation of the corpus callosum (CC), anterior commissure (AC), and postoptic commissure (POC), connecting the left and right cerebral hemispheres, is crucial for cerebral functioning. Collapsin response mediator protein 2 (CRMP2) has been suggested to be associated with the mechanisms governing this formation, based on knockout studies in mice and knockdown/knockout studies in zebrafish. Previously, we reported two cases of non-synonymous CRMP2 variants with S14R and R565C substitutions. Among the, the R565C substitution (p.R565C) was caused by the novel CRMP2 mutation c.1693C > T, and the patient presented with intellectual disability accompanied by CC hypoplasia. In this study, we demonstrate that crmp2 mRNA could rescue AC and POC formation in crmp2-knockdown zebrafish, whereas the mRNA with the R566C mutation could not. Zebrafish CRMP2 R566C corresponds to human CRMP2 R565C. Further experiments with transfected cultured cells indicated that CRMP2 with the R566C mutation could not bind to kinesin light chain 1 (KLC1). Knockdown of klc1a in zebrafish resulted in defective AC and POC formation, revealing a genetic interaction with crmp2. These findings suggest that the CRMP2 R566C mutant fails to bind to KLC1, preventing axonal elongation and leading to defective AC and POC formation in zebrafish and CC formation defects in humans. Our study highlights the importance of the interaction between CRMP2 and KLC1 in the formation of the forebrain commissures, revealing a novel mechanism associated with CRMP2 mutations underlying human neurodevelopmental abnormalities.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular , Proteínas del Tejido Nervioso , Proteínas de Pez Cebra , Pez Cebra , Animales , Humanos , Animales Modificados Genéticamente , Cuerpo Calloso/metabolismo , Embrión no Mamífero , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Cinesinas/metabolismo , Cinesinas/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Prosencéfalo/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
8.
Eur J Med Genet ; 70: 104955, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38857829

RESUMEN

CCP110 (centriolar coiled coil protein 110, also known as CP110) is one of the essential proteins localized in the centrosome that plays critical roles in the regulation of the cell cycle and also in the initiation of ciliogenesis. So far, no human congenital disorders have been identified to be associated with pathogenic variants of CCP110. Mice with biallelic loss-of-function variants of Ccp110 (Ccp110-/-) are known to manifest multiple organ defects, including a small body size, polydactyly, omphalocele, congenital heart defects, cleft palate, short ribs, and a small thoracic cage, a pattern of abnormalities closely resembling that in "ciliopathies" in humans. Herein, we report a 7-month-old male infant who presented with growth failure and skeletal abnormalities, including a narrow thorax and severe brachydactyly. Trio exome analysis of the genomic DNA of the patient and his parents showed that the patient was a compound heterozygote for truncating variants of CCP110, including a frameshift variant NM_001323572.2:c.856_857del, p.(Val286Leufs*5) inherited from the father, and a nonsense variant NM_001323572.2:c.1129C>T, p.(Arg377*) inherited from the mother. The strikingly similar pattern of malformations between Ccp110-/- mice and the 7-month-old male infant reported herein carrying unequivocal truncating CCP110 variants strongly supports the contention that CCP110 is a novel disease-causative gene.


Asunto(s)
Proteínas de Ciclo Celular , Ciliopatías , Fenotipo , Humanos , Masculino , Ciliopatías/genética , Ciliopatías/patología , Lactante , Proteínas de Ciclo Celular/genética , Mutación con Pérdida de Función , Proteínas Asociadas a Microtúbulos/genética , Alelos , Proteínas del Citoesqueleto
9.
Eur J Med Genet ; : 104967, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39151655

RESUMEN

Digital clubbing is characterized by bulbous enlargement of the terminal segments of the fingers. Hypotheses including hypoxia have been proposed for the pathogenesis of digital clubbing, but the exact pathogenesis of digital clubbing is still uncertain. Lysinuric protein intolerance (LPI) is caused by pathogenic variants in SLC7A7 and is often associated with interstitial lung disease. Previously two patients of LPI with digital clubbing but without hypoxia have been reported. It is unclear whether digital clubbing in LPI is secondary to hypoxia or directly related to SLC7A7 deficiency. Here we report a 6-year-old Japanese boy presented with digital clubbing without hypoxia. He had episodic vomiting, each episode consisting of a single vomiting event occurring once a month, and his growth had been delayed. He had interstitial lung disease and hepatomegaly. He had compound heterozygous pathogenic variants in the SLC7A7, leading to the diagnosis of LPI. Together with the two previously reported patients mentioned above, we conclude that digital clubbing can occur in the absence of hypoxia. Digital clubbing in the absence of hypoxia has been observed in two genetic disorders related to prostaglandin (PG) E2, HPGD and SLCO2A1. PGE2 synthesis is primarily regulated by the cyclooxygenase 2, which plays a critical role in the control of inflammation. A high urine PGE level in the patient was compatible with the notion that PGE2 production may be increased in LPI. The occurrence of digital clubbing in the absence of hypoxia in LPI patients with SLC7A7 may be attributed to the mechanism of increased PGE2 production.

10.
Sci Rep ; 14(1): 6506, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499569

RESUMEN

Pathogenic variants in WDR45 on chromosome Xp11 cause neurodegenerative disorder beta-propeller protein-associated neurodegeneration (BPAN). Currently, there is no effective therapy for BPAN. Here we report a 17-year-old female patient with BPAN and show that antisense oligonucleotide (ASO) was effective in vitro. The patient had developmental delay and later showed extrapyramidal signs since the age of 15 years. MRI findings showed iron deposition in the globus pallidus and substantia nigra on T2 MRI. Whole genome sequencing and RNA sequencing revealed generation of pseudoexon due to inclusion of intronic sequences triggered by an intronic variant that is remote from the exon-intron junction: WDR45 (OMIM #300526) chrX(GRCh37):g.48935143G > C, (NM_007075.4:c.235 + 159C > G). We recapitulated the exonization of intron sequences by a mini-gene assay and further sought antisense oligonucleotide that induce pseudoexon skipping using our recently developed, a dual fluorescent splicing reporter system that encodes two fluorescent proteins, mCherry, a transfection marker designed to facilitate evaluation of exon skipping and split eGFP, a splicing reaction marker. The results showed that the 24-base ASO was the strongest inducer of pseudoexon skipping. Our data presented here have provided supportive evidence for in vivo preclinical studies.


Asunto(s)
Oligonucleótidos Antisentido , Empalme del ARN , Femenino , Humanos , Adolescente , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Mutación , Exones/genética , Proteínas Portadoras/genética
11.
Parkinsonism Relat Disord ; 124: 107018, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810319

RESUMEN

BACKGROUND: DYT-KMT2B, also known as DYT28, is a childhood-onset hereditary dystonia caused by KMT2B mutation. The pathogenesis of DYT-KMT2B involves haploinsufficiency of KMT2B, an enzyme that catalyzes specific histone methylation (H3K4me3). Dysmorphic features in patients with DYT-KMT2B suggest that KMT2B dysfunction may extend beyond the neuronal system. Therefore, valuable diagnostic insights may be obtained from readily available tissue samples. OBJECTIVES: To explore the altered H3K4me3 levels in non-neural tissue of DYT-KMT2B patients. METHODS: A database analysis was performed to determine in which parts of the body and in which cells KMT2B is highly expressed. Twelve clinically and genetically diagnosed patients with DYT-KMT2B and 12 control subjects participated in this study. Oral mucosa-derived purified histone proteins were analyzed using Western blotting with anti-H3K4me3 and anti-H4 antibodies. RESULTS: Higher expression of KMT2B was observed in oral keratinocytes and gingival fibroblasts, constituting the oral mucosa. In oral mucosa analyses, DYT-KMT2B cases exhibited markedly reduced H3K4me3 levels compared with the controls. Using a cutoff window of 0.90-0.98, the H3K4me3/H4 expression ratio was able to distinguish patient groups. CONCLUSIONS: Oral mucosa H3K4me3 analysis is currently not sufficient as a diagnostic tool for DYT-KMT2B, but has the advantage for screening test since it is a non-invasive means.


Asunto(s)
Trastornos Distónicos , N-Metiltransferasa de Histona-Lisina , Histonas , Mucosa Bucal , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Trastornos Distónicos/genética , Trastornos Distónicos/metabolismo , Fibroblastos/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Histonas/genética , Queratinocitos/metabolismo , Metilación , Mucosa Bucal/metabolismo
12.
Immunother Adv ; 3(1): ltad027, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38549698

RESUMEN

Germline gain-of-function (GOF) variants in the signal transducer and activator of transcription 3 (STAT3) gene is an inborn error of immunity presenting with autoimmunity and lymphoproliferation. Symptoms can vary widely, and no effective treatment has been established. This study investigated the efficacy of Janus kinase (JAK) inhibitors (JAKi) in patients with STAT3-GOF. Four patients were enrolled and their clinical symptoms before and after the initiation of treatment with JAKi were described. A cell stimulation assay was performed using Epstein-Barr virus transformed lymphoid cell lines (EBV-LCLs) that were derived from the patients with STAT3-GOF. The patients presented with various symptoms, and these symptoms mostly improved after the initiation of JAKi treatment. Upon interleukin-6 stimulation, the EBV-LCLs of patients showed enhanced STAT3 phosphorylation compared with those of the EBV-LCLs of healthy controls. In conclusion, four Japanese patients with STAT3-GOF were successfully treated with JAKi. JAKi ameliorated various symptoms and therefore, the use of JAKi could be an effective treatment option for patients with STAT3-GOF.

14.
Preprint en Inglés | PREPRINT-MEDRXIV | ID: ppmedrxiv-21250798

RESUMEN

ObjectivesWhole SARS-CoV-2 genome sequencing from COVID-19 patients is useful for infection control and regional trends evaluation. We report a lineage data collected from hospitals in the Kanto region of Japan. MethodsWe performed whole genome sequencing in specimens of 198 COVID-19 patients at 13 collaborating hospitals in the Kanto region. Phylogenetic analysis and fingerprinting of the nucleotide substitutions underwent to differentiate and classify the viral lineages. ResultsMore than 90% of the strains belonged to Clade 20B and two lineages (B.1.1.284 and B.1.1.214) have been detected predominantly in the Kanto region. However, one sample from a COVID-19 patient in November 2020, belonged to the B.1.346 lineage of Clade 20C, which has been prevalent in western United States. The patient had no history of overseas travel and no contact with anyone who had travelled abroad, suggesting that this strain appeared likely to have been imported from western United States, across the strict quarantine barrier. ConclusionB.1.1.284 and B.1.1.214 have been identified predominantly in the Kanto region and B.1.346 of clade 20C in one patient was probably imported from western United States. These results illustrate that a decentralized network of hospitals can be significantly advantageous for monitoring regional molecular epidemiologic trends. Highlights{middle dot} Whole SARS-CoV-2 genome sequencing is useful for infection control {middle dot} B.1.1.284 and B.1.1.214 have been identified predominantly in the Kanto region {middle dot} B.1.346 of Clade 20C was detected in one COVID-19 patient in November {middle dot} Molecular genomic data sharing provides benefits to public health against COVID-19

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA