Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Plant Physiol ; 191(1): 70-86, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36124989

RESUMEN

Bioengineering approaches to modify lignin content and structure in plant cell walls have shown promise for facilitating biochemical conversions of lignocellulosic biomass into valuable chemicals. Despite numerous research efforts, however, the effect of altered lignin chemistry on the supramolecular assembly of lignocellulose and consequently its deconstruction in lignin-modified transgenic and mutant plants is not fully understood. In this study, we aimed to close this gap by analyzing lignin-modified rice (Oryza sativa L.) mutants deficient in 5-HYDROXYCONIFERALDEHYDE O-METHYLTRANSFERASE (CAldOMT) and CINNAMYL ALCOHOL DEHYDROGENASE (CAD). A set of rice mutants harboring knockout mutations in either or both OsCAldOMT1 and OsCAD2 was generated in part by genome editing and subjected to comparative cell wall chemical and supramolecular structure analyses. In line with the proposed functions of CAldOMT and CAD in grass lignin biosynthesis, OsCAldOMT1-deficient mutant lines produced altered lignins depleted of syringyl and tricin units and incorporating noncanonical 5-hydroxyguaiacyl units, whereas OsCAD2-deficient mutant lines produced lignins incorporating noncanonical hydroxycinnamaldehyde-derived units. All tested OsCAldOMT1- and OsCAD2-deficient mutants, especially OsCAldOMT1-deficient lines, displayed enhanced cell wall saccharification efficiency. Solid-state nuclear magnetic resonance (NMR) and X-ray diffraction analyses of rice cell walls revealed that both OsCAldOMT1- and OsCAD2 deficiencies contributed to the disruptions of the cellulose crystalline network. Further, OsCAldOMT1 deficiency contributed to the increase of the cellulose molecular mobility more prominently than OsCAD2 deficiency, resulting in apparently more loosened lignocellulose molecular assembly. Such alterations in cell wall chemical and supramolecular structures may in part account for the variations of saccharification performance of the OsCAldOMT1- and OsCAD2-deficient rice mutants.


Asunto(s)
Lignina , Oryza , Lignina/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Mutación/genética , Pared Celular/metabolismo
2.
Breed Sci ; 70(2): 167-175, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32523398

RESUMEN

Salinity causes major reductions in cultivated land area, crop productivity, and crop quality, and salt-tolerant crops have been required to sustain agriculture in salinized areas. The annual C4 crop plant Sorghum bicolor (L.) Moench is salt tolerant, with large variation among accessions. Sorghum's salt tolerance is often evaluated during early growth, but such evaluations are weakly related to overall performance. Here, we evaluated salt tolerance of 415 sorghum accessions grown in saline soil (0, 50, 100, and 150 mM NaCl) for 3 months. Some accessions produced up to 400 g per plant of biomass and showed no growth inhibition at 50 mM NaCl. Our analysis indicated that the genetic factors that affected biomass production under 100 mM salt stress were more different from those without salt stress, comparing to the differences between those under 50 mM and 100 mM salt stress. A genome-wide association study for salt tolerance identified two single-nucleotide polymorphisms (SNPs) that were significantly associated with biomass production, only at 50 mM NaCl. Additionally, two SNPs were significantly associated with salt tolerance index as an indicator for growth response of each accession to salt stress. Our results offer candidate genetic resources and SNP markers for breeding salt-tolerant sorghum.

3.
Plant J ; 2018 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-29890017

RESUMEN

p-Coumaroyl ester 3-hydroxylase (C3'H) is a key enzyme involved in the biosynthesis of lignin, a phenylpropanoid polymer that is the major constituent of secondary cell walls in vascular plants. Although the crucial role of C3'H in lignification and its manipulation to upgrade lignocellulose have been investigated in eudicots, limited information is available in monocotyledonous grass species, despite their potential as biomass feedstocks. Here we address the pronounced impacts of C3'H deficiency on the structure and properties of grass cell walls. C3'H-knockdown lines generated via RNA interference (RNAi)-mediated gene silencing, with about 0.5% of the residual expression levels, reached maturity and set seeds. In contrast, C3'H-knockout rice mutants generated via CRISPR/Cas9-mediated mutagenesis were severely dwarfed and sterile. Cell wall analysis of the mature C3'H-knockdown RNAi lines revealed that their lignins were largely enriched in p-hydroxyphenyl (H) units while being substantially reduced in the normally dominant guaiacyl (G) and syringyl (S) units. Interestingly, however, the enrichment of H units was limited to within the non-acylated lignin units, with grass-specific γ-p-coumaroylated lignin units remaining apparently unchanged. Suppression of C3'H also resulted in relative augmentation in tricin residues in lignin as well as a substantial reduction in wall cross-linking ferulates. Collectively, our data demonstrate that C3'H expression is an important determinant not only of lignin content and composition but also of the degree of cell wall cross-linking. We also demonstrated that C3'H-suppressed rice displays enhanced biomass saccharification.

4.
Planta ; 246(2): 337-349, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28421330

RESUMEN

MAIN CONCLUSION: Regulation of a gene encoding coniferaldehyde 5-hydroxylase leads to substantial alterations in lignin structure in rice cell walls, identifying a promising genetic engineering target for improving grass biomass utilization. The aromatic composition of lignin greatly affects utilization characteristics of lignocellulosic biomass and, therefore, has been one of the primary targets of cell wall engineering studies. Limited information is, however, available regarding lignin modifications in monocotyledonous grasses, despite the fact that grass lignocelluloses have a great potential for feedstocks of biofuel production and various biorefinery applications. Here, we report that manipulation of a gene encoding coniferaldehyde 5-hydroxylase (CAld5H, or ferulate 5-hydroxylase, F5H) leads to substantial alterations in syringyl (S)/guaiacyl (G) lignin aromatic composition in rice (Oryza sativa), a major model grass and commercially important crop. Among three CAld5H genes identified in rice, OsCAld5H1 (CYP84A5) appeared to be predominantly expressed in lignin-producing rice vegetative tissues. Down-regulation of OsCAld5H1 produced altered lignins largely enriched in G units, whereas up-regulation of OsCAld5H1 resulted in lignins enriched in S units, as revealed by a series of wet-chemical and NMR structural analyses. Our data collectively demonstrate that OsCAld5H1 expression is a major factor controlling S/G lignin composition in rice cell walls. Given that S/G lignin composition affects various biomass properties, we contemplate that manipulation of CAld5H gene expression represents a promising strategy to upgrade grass biomass for biorefinery applications.


Asunto(s)
Carboxiliasas/metabolismo , Lignina/metabolismo , Oryza/enzimología , Acroleína/análogos & derivados , Acroleína/química , Acroleína/metabolismo , Biocombustibles , Biomasa , Vías Biosintéticas , Carboxiliasas/genética , Pared Celular/metabolismo , Regulación hacia Abajo , Ingeniería Genética , Lignina/química , Oryza/citología , Oryza/genética , Oryza/crecimiento & desarrollo , Filogenia , Hojas de la Planta/anatomía & histología , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regulación hacia Arriba
5.
Planta ; 242(3): 589-600, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26070439

RESUMEN

MAIN CONCLUSION: A rice MYB transcription factor, OsMYB58/63, was found to directly upregulate the expression of a rice secondary wall-specific cellulose synthase gene, cellulose synthase A7 ( OsCesA7 ); in contrast, the Arabidopsis putative orthologs AtMYB58 and AtMYB63 have been shown to specifically activate lignin biosynthesis. Although indirect evidence has shown that grass plants are similar to but partially different from dicotyledonous ones in transcriptional regulation of lignocellulose biosynthesis, little is known about the differences. This study showed that a rice MYB transcription factor, OsMYB58/63, directly upregulated the expression of a rice secondary wall-specific cellulose synthase gene, cellulose synthase A7 (OsCesA7). Gene co-expression analysis showed that, in rice, OsMYB58/63 and several rice MYB genes were co-expressed with genes encoding lignocellulose biosynthetic enzymes. The expression levels of OsMYB55/61, OsMYB55/61-L, OsMYB58/63, and OsMYB42/85 were commonly found to be high in culm internodes and nodes. All four MYB transcription factors functioned as transcriptional activators in yeast cells. OsMYB58/63 most strongly transactivated the expression of OsCesA7 in rice protoplasts. Moreover, recombinant OsMYB58/63 protein was bound to two distinct cis-regulatory elements, AC-II and SMRE3, in the OsCesA7 promoter. This is in sharp contrast to the role of Arabidopsis orthologs, AtMYB58 and AtMYB63, which had been reported to specifically activate lignin biosynthesis. The promoter analysis revealed that AC elements, which are the binding sites for MYB58 and MYB63, were lacking in cellulose and xylan biosynthetic genes in Arabidopsis, but present in cellulose, xylan, and lignin biosynthetic genes in rice, implying that the difference of transcriptional regulation between rice and Arabidopsis is due to the distinct composition of promoters. Our results provide a new insight into transcriptional regulation in grass lignocellulose biosynthesis.


Asunto(s)
Pared Celular/enzimología , Pared Celular/metabolismo , Glucosiltransferasas/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Pared Celular/genética , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Oryza/enzimología , Oryza/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética
6.
Plant Cell Physiol ; 51(2): 323-7, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20008940

RESUMEN

Boron (B) deprivation induces various responses in plant cells, some of which can be observed very early. However, it has been unknown what kind of signal is generated by the stress. We found that B deprivation induced the expression of stress-responsive genes within 1 h in suspension-cultured tobacco BY-2 cells. The induction was largely suppressed by withholding medium Ca(2+) or by adding a Ca(2+) channel blocker. Analysis using aequorin-expressing cells showed that B-deprived cells took up more Ca(2+) than control cells. These results suggest that Ca(2+) influx plays a role in B deprivation stress signaling.


Asunto(s)
Boro/metabolismo , Calcio/metabolismo , Nicotiana/metabolismo , Señalización del Calcio , Células Cultivadas , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico
7.
Plant Cell Physiol ; 50(1): 26-36, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19054807

RESUMEN

Boron (B) is an essential micronutrient for vascular plants. However, it remains unclear how B deficiency leads to various metabolic disorders and cell death. To understand this mechanism, we analyzed the physiological changes in suspension-cultured tobacco (Nicotiana tabacum) BY-2 cells upon B deprivation. When 3-day-old cells were transferred to B-free medium, cell death was detectable as early as 12 h after treatment. The B-deprived cells accumulated more reactive oxygen species and lipid peroxides than control cells, and showed a slight but significant decrease in the cellular ascorbate pool. Supplementing the media with lipophilic antioxidants effectively suppressed the death of B-deprived cells, suggesting that the oxidative damage is the immediate and major cause of cell death under B deficiency. Dead cells in B-free culture exhibited a characteristic morphology with a shrunken cytoplasm, which is often seen in cells undergoing programmed cell death (PCD). However, they did not display other hallmarks of PCD such as internucleosomal DNA fragmentation, decreased ascorbate peroxidase expression and protection from death by cycloheximide. These results suggest that the death of tobacco cells induced by B deprivation is not likely to be a typical PCD.


Asunto(s)
Boro/farmacología , Muerte Celular/efectos de los fármacos , Nicotiana/metabolismo , Estrés Oxidativo , Antioxidantes/farmacología , Ácido Ascórbico/metabolismo , Células Cultivadas , ADN de Plantas/metabolismo , Peróxidos Lipídicos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico , Nicotiana/citología
8.
Front Microbiol ; 10: 407, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30915047

RESUMEN

Sorghum (Sorghum bicolor) is cultivated worldwide for food, bioethanol, and fodder production. Although nitrogen fixation in sorghum has been studied since the 1970s, N2-fixing bacteria have not been widely examined in field-grown sorghum plants because the identification of functional diazotrophs depends on the culture method used. The aim of this study was to identify functional N2-fixing bacteria associated with field-grown sorghum by using "omics" approaches. Four lines of sorghum (KM1, KM2, KM4, and KM5) were grown in a field in Fukushima, Japan. The nitrogen-fixing activities of the roots, leaves, and stems were evaluated by acetylene reduction and 15N2-feeding assays. The highest nitrogen-fixing activities were detected in the roots of lines KM1 and KM2 at the late growth stage. Bacterial cells extracted from KM1 and KM2 roots were analyzed by metagenome, proteome, and isolation approaches and their DNA was isolated and sequenced. Nitrogenase structural gene sequences in the metagenome sequences were retrieved using two nitrogenase databases. Most sequences were assigned to nifHDK of Bradyrhizobium species, including non-nodulating Bradyrhizobium sp. S23321 and photosynthetic B. oligotrophicum S58T. Amplicon sequence and metagenome analysis revealed a relatively higher abundance (2.9-3.6%) of Bradyrhizobium in the roots. Proteome analysis indicated that three NifHDK proteins of Bradyrhizobium species were consistently detected across sample replicates. By using oligotrophic media, we purified eight bradyrhizobial isolates. Among them, two bradyrhizobial isolates possessed 16S rRNA and nif genes similar to those in S23321 and S58T which were predicted as functional diazotrophs by omics approaches. Both free-living cells of the isolates expressed N2-fixing activity in a semi-solid medium according to an acetylene reduction assay. These results suggest that major functional N2-fixing bacteria in sorghum roots are unique bradyrhizobia that resemble photosynthetic B. oligotrophicum S58T and non-nodulating Bradyrhizobium sp. S23321. Based on our findings, we discuss the N2-fixing activity level of sorghum plants, phylogenetic and genomic comparison with diazotrophic bacteria in other crops, and Bradyrhizobium diversity in N2 fixation and nodulation.

9.
Sci Rep ; 9(1): 17153, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31748605

RESUMEN

Lignin is a complex phenylpropanoid polymer deposited in plant cell walls. Lignin has long been recognized as an important limiting factor for the polysaccharide-oriented biomass utilizations. To mitigate lignin-associated biomass recalcitrance, numerous mutants and transgenic plants that produce lignocellulose with reduced lignin contents and/or lignins with altered chemical structures have been produced and characterised. However, it is not fully understood how altered lignin chemistry affects the supramolecular structure of lignocellulose, and consequently, its utilization properties. Herein, we conducted comprehensive chemical and supramolecular structural analyses of lignocellulose produced by a rice cad2 mutant deficient in CINNAMYL ALCOHOL DEHYDROGENASE (CAD), which encodes a key enzyme in lignin biosynthesis. By using a solution-state two-dimensional NMR approach and complementary chemical methods, we elucidated the structural details of the altered lignins enriched with unusual hydroxycinnamaldehyde-derived substructures produced by the cad2 mutant. In parallel, polysaccharide assembly and the molecular mobility of lignocellulose were investigated by solid-state 13C MAS NMR, nuclear magnetic relaxation, X-ray diffraction, and Simon's staining analyses. Possible links between CAD-associated lignin modifications (in terms of total content and chemical structures) and changes to the lignocellulose supramolecular structure are discussed in the context of the improved biomass saccharification efficiency of the cad2 rice mutant.


Asunto(s)
Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/metabolismo , Lignina/química , Lignina/metabolismo , Oryza/química , Oryza/metabolismo , Proteínas de Plantas/química , Biomasa , Pared Celular/química , Pared Celular/metabolismo , Cinamatos/química , Cinamatos/metabolismo , Estructura Molecular , Mutación/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/metabolismo
10.
Plant Biotechnol (Tokyo) ; 34(1): 7-15, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-31275003

RESUMEN

Lignin encrusts lignocellulose polysaccharides, and has long been considered an obstacle for the efficient use of polysaccharides during processes such as pulping and bioethanol fermentation. However, lignin is also a potential feedstock for aromatic products and is an important by-product of polysaccharide utilization. Therefore, producing biomass plant species exhibiting enhanced lignin production is an important breeding objective. Herein, we describe the development of transgenic rice plants with increased lignin content. Five Arabidopsis thaliana (Arabidopsis) and one Oryza sativa (rice) MYB transcription factor genes that were implicated to be involved in lignin biosynthesis were transformed into rice (O. sativa L. ssp. japonica cv. Nipponbare). Among them, three Arabidopsis MYBs (AtMYB55, AtMYB61, and AtMYB63) in transgenic rice T1 lines resulted in culms with lignin content about 1.5-fold higher than that of control plants. Furthermore, lignin structures in AtMYB61-overexpressing rice plants were investigated by wet-chemistry and two-dimensional nuclear magnetic resonance spectroscopy approaches. Our data suggested that heterologous expression of AtMYB61 in rice increased lignin content mainly by enriching syringyl units as well as p-coumarate and tricin moieties in the lignin polymers. We contemplate that this strategy is also applicable to lignin upregulation in large-sized grass biomass plants, such as Sorghum, switchgrass, Miscanthus and Erianthus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA