Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Rev Sci Instrum ; 79(5): 053704, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18513072

RESUMEN

We have fabricated and characterized micro-SQUID susceptometers for use in low-temperature scanning probe microscopy systems. The design features the following: a 4.6 mum diameter pickup loop; an integrated field coil to apply a local field to the sample; an additional counterwound pickup-loop/field-coil pair to cancel the background signal from the applied field in the absence of the sample; modulation coils to allow setting the SQUID at its optimum bias point (independent of the applied field), and shielding and symmetry that minimizes coupling of magnetic fields into the leads and body of the SQUID. We use a SQUID series array preamplifier to obtain a system bandwidth of 1 MHz. The flux noise at 125 mK is approximately 0.25 mu Phi 0/ sqrt Hz above 10 kHz, with a value of 2.5 mu Phi 0/ sqrt Hz at 10 Hz. The nominal sensitivity to electron spins located at the center of the pickup loop is approximately 200 muB/ sqrt Hz above 10 kHz, in the white-noise frequency region.

2.
Phys Rev Lett ; 103(2): 026805, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19659233

RESUMEN

Susceptibility measurements of patterned thin films at sub-K temperatures were carried out using a scanning SQUID microscope that can resolve signals corresponding to a few hundred Bohr magnetons. Several metallic and insulating thin films, even oxide-free Au films, show a paramagnetic response with a temperature dependence that indicates unpaired spins as the origin. The observed response exhibits a measurable out-of-phase component, which implies that these spins will create 1/f-like magnetic noise. The measured spin density is consistent with recent explanations of low frequency flux noise in SQUIDs and superconducting qubits in terms of spin fluctuations, and suggests that such unexpected spins may be even more ubiquitous than already indicated by earlier measurements. Our measurements set several constraints on the nature of these spins.

3.
Phys Rev Lett ; 102(13): 136802, 2009 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-19392385

RESUMEN

The authors have measured the magnetic response of 33 individual cold mesoscopic gold rings, one ring at a time. The response of some sufficiently small rings has a component that is periodic in the flux through the ring and is attributed to a persistent current. Its period is close to h/e, and its sign and amplitude vary between rings. The amplitude distribution agrees well with predictions for the typical h/e current in diffusive rings. The temperature dependence of the amplitude, measured for four rings, is also consistent with theory. These results disagree with previous measurements of three individual metal rings that showed a much larger periodic response than expected. The use of a scanning SQUID microscope enabled in situ measurements of the sensor background. A paramagnetic linear susceptibility and a poorly understood anomaly around a zero field are attributed to defect spins.

4.
Science ; 318(5855): 1440-3, 2007 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-18048686

RESUMEN

Fluctuations are important near phase transitions, where they can be difficult to describe quantitatively. Superconductivity in mesoscopic rings is particularly intriguing because the critical temperature is an oscillatory function of magnetic field. There is an exact theory for thermal fluctuations in one-dimensional superconducting rings, which are therefore expected to be an excellent model system. We measured the susceptibility of many rings, one ring at a time, by using a scanning superconducting quantum interference device that can isolate magnetic signals that are seven orders of magnitude smaller than applied flux. We find that the fluctuation theory describes the results and that a single parameter characterizes the ways in which the fluctuations are especially important at magnetic fields where the critical temperature is suppressed.

5.
Phys Rev Lett ; 97(23): 237002, 2006 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-17280232

RESUMEN

The magnetic response and fluxoid transitions of superconducting aluminum rings of various sizes, deposited under conditions likely to generate a layered structure, show good agreement with a two-order-parameter Ginzburg-Landau model. For intermediate couplings, we find metastable states that have different phase winding numbers around the ring in each of the two order parameters. Those states, previously theoretically predicted, are analogous to fractional vortices in singly connected samples with two-order-parameter superconductivity. Larger coupling locks the relative phase so that the two order parameters are only manifest in the temperature dependence of the response. With increasing proximitization, this signature gradually disappears.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA