Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 607(7918): 313-320, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35768506

RESUMEN

The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canis familiaris) lived1-8. Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT88 40,000-30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located.


Asunto(s)
Perros , Genoma , Genómica , Filogenia , Lobos , África , Animales , ADN Antiguo/análisis , Perros/genética , Domesticación , Europa (Continente) , Genoma/genética , Historia Antigua , Medio Oriente , Mutación , América del Norte , Selección Genética , Siberia , Proteínas Supresoras de Tumor/genética , Lobos/clasificación , Lobos/genética
2.
Nature ; 591(7848): 87-91, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33442059

RESUMEN

Dire wolves are considered to be one of the most common and widespread large carnivores in Pleistocene America1, yet relatively little is known about their evolution or extinction. Here, to reconstruct the evolutionary history of dire wolves, we sequenced five genomes from sub-fossil remains dating from 13,000 to more than 50,000 years ago. Our results indicate that although they were similar morphologically to the extant grey wolf, dire wolves were a highly divergent lineage that split from living canids around 5.7 million years ago. In contrast to numerous examples of hybridization across Canidae2,3, there is no evidence for gene flow between dire wolves and either North American grey wolves or coyotes. This suggests that dire wolves evolved in isolation from the Pleistocene ancestors of these species. Our results also support an early New World origin of dire wolves, while the ancestors of grey wolves, coyotes and dholes evolved in Eurasia and colonized North America only relatively recently.


Asunto(s)
Extinción Biológica , Filogenia , Lobos/clasificación , Animales , Fósiles , Flujo Génico , Genoma/genética , Genómica , Mapeo Geográfico , América del Norte , Paleontología , Fenotipo , Lobos/genética
3.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34544854

RESUMEN

Dogs have been essential to life in the Siberian Arctic for over 9,500 y, and this tight link between people and dogs continues in Siberian communities. Although Arctic Siberian groups such as the Nenets received limited gene flow from neighboring groups, archaeological evidence suggests that metallurgy and new subsistence strategies emerged in Northwest Siberia around 2,000 y ago. It is unclear if the Siberian Arctic dog population was as continuous as the people of the region or if instead admixture occurred, possibly in relation to the influx of material culture from other parts of Eurasia. To address this question, we sequenced and analyzed the genomes of 20 ancient and historical Siberian and Eurasian Steppe dogs. Our analyses indicate that while Siberian dogs were genetically homogenous between 9,500 to 7,000 y ago, later introduction of dogs from the Eurasian Steppe and Europe led to substantial admixture. This is clearly the case in the Iamal-Nenets region (Northwestern Siberia) where dogs from the Iron Age period (∼2,000 y ago) possess substantially less ancestry related to European and Steppe dogs than dogs from the medieval period (∼1,000 y ago). Combined with findings of nonlocal materials recovered from these archaeological sites, including glass beads and metal items, these results indicate that Northwest Siberian communities were connected to a larger trade network through which they acquired genetically distinctive dogs from other regions. These exchanges were part of a series of major societal changes, including the rise of large-scale reindeer pastoralism ∼800 y ago.


Asunto(s)
Distribución Animal , Evolución Biológica , Perros/genética , Flujo Génico , Genética de Población , Genoma , Migración Humana , Animales , Arqueología , Humanos , Siberia
4.
Nature ; 514(7523): 445-9, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25341783

RESUMEN

We present the high-quality genome sequence of a ∼45,000-year-old modern human male from Siberia. This individual derives from a population that lived before-or simultaneously with-the separation of the populations in western and eastern Eurasia and carries a similar amount of Neanderthal ancestry as present-day Eurasians. However, the genomic segments of Neanderthal ancestry are substantially longer than those observed in present-day individuals, indicating that Neanderthal gene flow into the ancestors of this individual occurred 7,000-13,000 years before he lived. We estimate an autosomal mutation rate of 0.4 × 10(-9) to 0.6 × 10(-9) per site per year, a Y chromosomal mutation rate of 0.7 × 10(-9) to 0.9 × 10(-9) per site per year based on the additional substitutions that have occurred in present-day non-Africans compared to this genome, and a mitochondrial mutation rate of 1.8 × 10(-8) to 3.2 × 10(-8) per site per year based on the age of the bone.


Asunto(s)
Fósiles , Genoma Humano/genética , Alelos , Animales , Cromosomas Humanos Par 12/genética , Dieta , Evolución Molecular , Humanos , Hibridación Genética/genética , Masculino , Datos de Secuencia Molecular , Tasa de Mutación , Hombre de Neandertal/genética , Filogenia , Densidad de Población , Dinámica Poblacional , Análisis de Componente Principal , Análisis de Secuencia de ADN , Siberia
5.
Heredity (Edinb) ; 122(2): 205-218, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29959426

RESUMEN

Because of their role in immune defense against pathogens, major histocompatibility complex (MHC) genes are useful in evolutionary studies on how wild vertebrates adapt to their environments. We investigated the molecular evolution of MHC class I (MHCI) genes in four closely related species of Eurasian badgers, genus Meles. All four species of badgers showed similarly high variation in MHCI sequences compared to other Carnivora. We identified 7-21 putatively functional MHCI sequences in each of the badger species, and 2-7 sequences per individual, indicating the existence of 1-4 loci. MHCI exon 2 and 3 sequences encoding domains α1 and α2 exhibited different clade topologies in phylogenetic networks. Non-synonymous nucleotide substitutions at codons for antigen-binding sites exceeded synonymous substitutions for domain α1 but not for domain α2, suggesting that the domains α1 and α2 likely had different evolutionary histories in these species. Positive selection and recombination seem to have shaped the variation in domain α2, whereas positive selection was dominant in shaping the variation in domain α1. In the separate phylogenetic analyses for exon 2, exon 3, and intron 2, each showed three clades of Meles alleles, with rampant trans-species polymorphism, indicative of the long-term maintenance of ancestral MHCI polymorphism by balancing selection.


Asunto(s)
Evolución Molecular , Genes MHC Clase I , Mustelidae/genética , Alelos , Animales , Exones , Variación Genética , Mustelidae/clasificación , Filogenia , Polimorfismo Genético , Recombinación Genética
6.
Zoolog Sci ; 33(1): 44-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26853868

RESUMEN

The mitochondrial DNA (mtDNA) control region (198- to 598-bp) of four ancient Canis specimens (two Canis mandibles, a cranium, and a first phalanx) was examined, and each specimen was genetically identified as Japanese wolf. Two unique nucleotide substitutions, the 78-C insertion and the 482-G deletion, both of which are specific for Japanese wolf, were observed in each sample. Based on the mtDNA sequences analyzed, these four specimens and 10 additional Japanese wolf samples could be classified into two groups- Group A (10 samples) and Group B (4 samples)-which contain or lack an 8-bp insertion/deletion (indel), respectively. Interestingly, three dogs (Akita-b, Kishu 25, and S-husky 102) that each contained Japanese wolf-specific features were also classified into Group A or B based on the 8-bp indel. To determine the origin or ancestor of the Japanese wolf, mtDNA control regions of ancient continental Canis specimens were examined; 84 specimens were from Russia, and 29 were from China. However, none of these 113 specimens contained Japanese wolf-specific sequences. Moreover, none of 426 Japanese modern hunting dogs examined contained these Japanese wolf-specific mtDNA sequences. The mtDNA control region sequences of Groups A and B appeared to be unique to grey wolf and dog populations.


Asunto(s)
ADN Mitocondrial/genética , Variación Genética , Lobos/genética , Distribución Animal , Animales , Perros/genética , Japón , Lobos/fisiología
7.
Mol Biol Evol ; 30(7): 1644-52, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23619144

RESUMEN

To further elucidate the migration history of the brown bears (Ursus arctos) on Hokkaido Island, Japan, we analyzed the complete mitochondrial DNA (mtDNA) sequences of 35 brown bears from Hokkaido, the southern Kuril Islands (Etorofu and Kunashiri), Sakhalin Island, and the Eurasian Continent (continental Russia, Bulgaria, and Tibet), and those of four polar bears. Based on these sequences, we reconstructed the maternal phylogeny of the brown bear and estimated divergence times to investigate the timing of brown bear migrations, especially in northeastern Eurasia. Our gene tree showed the mtDNA haplotypes of all 73 brown and polar bears to be divided into eight divergent lineages. The brown bear on Hokkaido was divided into three lineages (central, eastern, and southern). The Sakhalin brown bear grouped with eastern European and western Alaskan brown bears. Etorofu and Kunashiri brown bears were closely related to eastern Hokkaido brown bears and could have diverged from the eastern Hokkaido lineage after formation of the channel between Hokkaido and the southern Kuril Islands. Tibetan brown bears diverged early in the eastern lineage. Southern Hokkaido brown bears were closely related to North American brown bears.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias/genética , Filogeografía , Ursidae/genética , Animales , Asia , Evolución Molecular , Haplotipos , Análisis de Secuencia de ADN
8.
Mol Ecol ; 22(19): 4958-71, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24033458

RESUMEN

While many species were confined to southern latitudes during the last glaciations, there has lately been mounting evidence that some of the most cold-tolerant species were actually able to survive close to the ice sheets. The contribution of these higher latitude outposts to the main recolonization thrust remains, however, untested. In the present study, we use the first range-wide survey of genetic diversity at cytoplasmic markers in Siberian larch (Larix sibirica; four mitochondrial (mt) DNA loci and five chloroplast (cp) DNA SSR loci) to (i) assess the relative contributions of southern and central areas to the current L. sibirica distribution range; and (ii) date the last major population expansion in both L. sibirica and adjacent Larix species. The geographic distribution of cpDNA variation was uninformative, but that of mitotypes clearly indicates that the southernmost populations, located in Mongolia and the Tien-Shan and Sayan Mountain ranges, had a very limited contribution to the current populations of the central and northern parts of the range. It also suggests that the contribution of the high latitude cryptic refugia was geographically limited and that most of the current West Siberian Plain larch populations likely originated in the foothills of the Sayan Mountains. Interestingly, the main population expansion detected through Approximate Bayesian Computation (ABC) in all four larch species investigated here pre-dates the LGM, with a mode in a range of 220,000-1,340,000 years BP. Hence, L. sibirica, like other major conifer species of the boreal forest, was strongly affected by climatic events pre-dating the Last Glacial Maximum.


Asunto(s)
Variación Genética , Genética de Población , Larix/genética , Teorema de Bayes , Citoplasma/genética , ADN de Cloroplastos/genética , ADN Mitocondrial/genética , ADN de Plantas/genética , Geografía , Mongolia
9.
Biology (Basel) ; 12(12)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38132343

RESUMEN

Despite the high level of interest, the population history of arctic foxes during the Late Pleistocene and Holocene remains poorly understood. Here we aimed to fill gaps in the demographic and colonization history of the arctic fox by analyzing new ancient DNA data from fossil specimens aged from 50 to 1 thousand years from the Northern and Polar Urals, historic DNA from museum specimens from the Novaya Zemlya Archipelago and the Taymyr Peninsula and supplementing these data by previously published sequences of recent and extinct arctic foxes from other regions. This dataset was used for reconstruction of a time-calibrated phylogeny and a temporal haplotype network covering four time intervals: Late Pleistocene (ranging from 30 to 13 thousand years bp), Holocene (ranging from 4 to 1 thousand years bp), historical (approximately 150 years), and modern. Our results revealed that Late Pleistocene specimens showed no genetic similarity to either modern or historical specimens, thus supporting the earlier hypothesis on local extinction rather than habitat tracking.

10.
Ecol Evol ; 13(8): e10404, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37546572

RESUMEN

The taxonomic status of the now likely extirpated Korean Peninsula wolf has been extensively debated, with some arguing it represents an independent wolf lineage, Canis coreanus. To investigate the Korean wolf's genetic affiliations and taxonomic status, we sequenced and analysed the genomes of a Korean wolf dated to the beginning of the 20th century, and a captive wolf originally from the Pyongyang Central Zoo. Our results indicated that the Korean wolf bears similar genetic ancestry to other regional East Asian populations, therefore suggesting it is not a distinct taxonomic lineage. We identified regional patterns of wolf population structure and admixture in East Asia with potential conservation consequences in the Korean Peninsula and on a regional scale. We find that the Korean wolf has similar genomic diversity and inbreeding to other East Asian wolves. Finally, we show that, in contrast to the historical sample, the captive wolf is genetically more similar to wolves from the Tibetan Plateau; hence, Korean wolf conservation programmes might not benefit from the inclusion of this specimen.

11.
Sci Adv ; 8(29): eabo6493, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35867782

RESUMEN

Research on the evolution of dog foraging and diet has largely focused on scavenging during their initial domestication and genetic adaptations to starch-rich food environments following the advent of agriculture. The Siberian archaeological record evidences other critical shifts in dog foraging and diet that likely characterize Holocene dogs globally. By the Middle Holocene, body size reconstruction for Siberia dogs indicates that most were far smaller than Pleistocene wolves. This contributed to dogs' tendencies to scavenge, feed on small prey, and reduce social foraging. Stable carbon and nitrogen isotope analysis of Siberian dogs reveals that their diets were more diverse than those of Pleistocene wolves. This included habitual consumption of marine and freshwater foods by the Middle Holocene and reliance on C4 foods by the Late Holocene. Feeding on such foods and anthropogenic waste increased dogs' exposure to microbes, affected their gut microbiomes, and shaped long-term dog population history.

12.
Geoarchaeology ; 36(3): 532-545, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33883826

RESUMEN

Paleolithic antiquity of parietal art in Ignatievskaya cave, Southern Ural, is supported by its subject (Late Pleistocene animals) as well as by paleontological and palynological data, and 14C dates from cultural layers associated with artistic activity (17.8-16.3 cal ka BP; association is established by finds of ochre in these layers). However, three 14C dates of charcoal motifs yielded younger, Holocene ages (7.4-6.0 cal ka BP). In this study, we constrain the age of parietal art in the cave by 230Th dating of flowstone that brackets the paintings. Flowstone did not form in the cave between c. 78 and 10 ka BP, due to widespread permafrost in northern Eurasia at that time. Our 230Th dates do not support the middle Holocene age of art in Ignatievskaya cave and are consistent with its Upper Paleolithic antiquity instead.

13.
Ecol Evol ; 10(17): 9060-9072, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32953046

RESUMEN

Just as the domestication of livestock is often cited as a key element in the Neolithic transition to settled, the emergence of large-scaled reindeer husbandry was a fundamental social transformation for the indigenous peoples of Arctic Eurasia. To better understand the history of reindeer domestication, and the genetic processes associated with the pastoral transition in the Eurasian Arctic, we analyzed archaeological and contemporary reindeer samples from Northwestern Siberia. The material represents Rangifer genealogies spanning from 15,000 years ago to the 18th century, as well as modern samples from the wild Taimyr population and from domestic herds managed by Nenetses. The wild and the domestic population are the largest populations of their kind in Northern Eurasia, and some Nenetses hold their domestic reindeer beside their wild cousins. Our analyses of 197 modern and 223 ancient mitochondrial DNA sequences revealed two genetic clusters, which are interpreted as representing the gene pools of contemporary domestic and past wild reindeer. Among a total of 137 different mitochondrial haplotypes identified in both the modern and archaeological samples, only 21 were detected in the modern domestic gene pool, while 11 of these were absent from the wild gene pool. The significant temporal genetic shift that we associate with the pastoral transition suggests that the emergence and spread of reindeer pastoralism in Northwestern Siberia originated with the translocation and subsequent selective breeding of a special type of animal from outside the region. The distinct and persistent domestic characteristics of the haplotype structure since the 18th century suggests little genetic exchange since then. The absence of the typical domestic clade in modern nearby wild populations suggests that the contemporary Nenets domestic breed feature an ancestry from outside its present main distribution, possibly from further South.

14.
Zoological Lett ; 3: 21, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29214050

RESUMEN

BACKGROUND: Sex-biased dispersal is widespread among mammals, including the brown bear (Ursus arctos). Previous phylogeographic studies of the brown bear based on maternally inherited mitochondrial DNA have shown intraspecific genetic structuring around the northern hemisphere. The brown bears on Hokkaido Island, northern Japan, comprise three distinct maternal lineages that presumably immigrated to the island from the continent in three different periods. Here, we investigate the paternal genetic structure across northeastern Asia and assess the connectivity among and within intraspecific populations in terms of male-mediated gene flow. RESULTS: We analyzed paternally inherited Y-chromosomal DNA sequence data and Y-linked microsatellite data of 124 brown bears from Hokkaido, the southern Kuril Islands (Kunashiri and Etorofu), Sakhalin, and continental Eurasia (Kamchatka Peninsula, Ural Mountains, European Russia, and Tibet). The Hokkaido brown bear population is paternally differentiated from, and lacked recent genetic connectivity with, the continental Eurasian and North American populations. We detected weak spatial genetic structuring of the paternal lineages on Hokkaido, which may have arisen through male-mediated gene flow among natal populations. In addition, our results suggest that the different dispersal patterns between male and female brown bears, combined with the founder effect and subsequent genetic drift, contributed to the makeup of the Etorofu Island population, in which the maternal and paternal lineages show different origins. CONCLUSIONS: Brown bears on Hokkaido and the adjacent southern Kuril Islands experienced different maternal and paternal evolutionary histories. Our results indicate that sex-biased dispersal has played a significant role in the evolutionary history of the brown bear in continental populations and in peripheral insular populations, such as on Hokkaido, the southern Kuril Islands, and Sakhalin.

15.
Sci Rep ; 7(1): 9508, 2017 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-28842717

RESUMEN

Much of the fossil record for dogs consists of mandibles. However, can fossil canid mandibles be reliably identified as dogs or wolves? 3D geometric morphometric analysis correctly classifies 99.5% of the modern dog and wolf mandibles. However, only 4 of 26 Ust'-Polui fossil mandibles, a Russian Arctic site occupied from 250BCE to 150CE, were identified as dogs and none of the 20 Ivolgin mandibles, an Iron Age site in southern Russia, were identified as dogs. Three of the Ust'-Polui mandibles and 8 of the Ivolgin mandibles were identified as wolves. In contrast, all 12 Ivolgin skulls and 5 Ust'-Polui skulls were clearly identified as dogs. Only the classification of the UP6571 skull as a dog (Dog Posterior Probability = 1.0) was not supported by the typical probability. Other evidence indicates these canids were domesticated: they were located within human dwellings, remains at both sites have butchery marks indicating that they were consumed, and isotope analysis of canid and human remains from Ust'-Polui demonstrate that both were consuming freshwater protein; indicating that the humans were feeding the canids. Our results demonstrate that the mandible may not evolve as rapidly as the cranium and the mandible is not reliable for identifying early dog fossils.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA