Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Biochem Biophys ; 79(4): 873-885, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34176101

RESUMEN

Astrocytes play an important role in the central nervous system function and may contribute to brain plasticity response during static magnetic fields (SMF) brain therapy. However, most studies evaluate SMF stimulation in brain plasticity while few studies evaluate the consequences of SMF at the cellular level. Thus, we here evaluate the effects of SMF at 305 mT (medium-intensity) in a primary culture of healthy/normal cortical astrocytes obtained from neonatal (1 to 2-day-old) Wistar rats. After reaching confluence, cells were daily subjected to SMF stimulation for 5 min, 15 min, 30 min, and 40 min during 7 consecutive days. Oxidative stress parameters, cell cycle, cell viability, and mitochondrial function were analyzed. The antioxidant capacity was reduced in groups stimulated for 5 and 40 min. Although no difference was observed in the enzymatic activity of superoxide dismutase and catalase or the total thiol content, lipid peroxidation was increased in all stimulated groups. The cell cycle was changed after 40 min of SMF stimulation while 15, 30, and 40 min led cells to death by necrosis. Mitochondrial function was reduced after SMF stimulation, although imaging analysis did not reveal substantial changes in the mitochondrial network. Results mainly revealed that SMF compromised healthy astrocytes' oxidative status and viability. This finding reveals how important is to understand the SMF stimulation at the cellular level since this therapeutic approach has been largely used against neurological and psychiatric diseases.


Asunto(s)
Astrocitos , Supervivencia Celular
2.
Behav Neurosci ; 126(5): 729-34, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23025835

RESUMEN

Memory persistence in the inhibitory avoidance (IA) task has been recently shown to require a new event of consolidation 12 hr after acquisition. The immobilization stress (IS) model is largely used to study the effects of stress on memory. In this study we investigated the interactions between stress by immobilization and its effect on the persistence of memory, and also a possible effect mediated by ß-adrenergic modulation of stress on memory persistence. An enhancement of long-term memory (LTM) persistence caused by stress through immobilization applied 12 hr after IA training was observed when the animals were submitted to 15 min or 1 hr of IS, but not to 3 hr. The reversal of this memory enhancement caused by IS was observed when the ß-adrenergic antagonist propranolol was infused intraperitoneally prior to stress, which implies that ß-adrenergic receptors are involved in stress enhancement of LTM persistence.


Asunto(s)
Memoria/fisiología , Propranolol/farmacología , Receptores Adrenérgicos beta/fisiología , Estrés Fisiológico/fisiología , Estrés Psicológico/fisiopatología , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Masculino , Memoria/efectos de los fármacos , Ratas , Ratas Wistar , Restricción Física
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA