Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 176(4): 702-715.e14, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30661758

RESUMEN

Voltage-gated sodium (Nav) channels are targets of disease mutations, toxins, and therapeutic drugs. Despite recent advances, the structural basis of voltage sensing, electromechanical coupling, and toxin modulation remains ill-defined. Protoxin-II (ProTx2) from the Peruvian green velvet tarantula is an inhibitor cystine-knot peptide and selective antagonist of the human Nav1.7 channel. Here, we visualize ProTx2 in complex with voltage-sensor domain II (VSD2) from Nav1.7 using X-ray crystallography and cryoelectron microscopy. Membrane partitioning orients ProTx2 for unfettered access to VSD2, where ProTx2 interrogates distinct features of the Nav1.7 receptor site. ProTx2 positions two basic residues into the extracellular vestibule to antagonize S4 gating-charge movement through an electrostatic mechanism. ProTx2 has trapped activated and deactivated states of VSD2, revealing a remarkable ∼10 Å translation of the S4 helix, providing a structural framework for activation gating in voltage-gated ion channels. Finally, our results deliver key templates to design selective Nav channel antagonists.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/ultraestructura , Péptidos/metabolismo , Venenos de Araña/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células CHO , Cricetulus , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X/métodos , Células HEK293 , Humanos , Activación del Canal Iónico , Péptidos/toxicidad , Dominios Proteicos , Venenos de Araña/toxicidad , Arañas , Bloqueadores del Canal de Sodio Activado por Voltaje , Canales de Sodio Activados por Voltaje/metabolismo
3.
Nature ; 557(7704): 196-201, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29720648

RESUMEN

The movement of core-lipopolysaccharide across the inner membrane of Gram-negative bacteria is catalysed by an essential ATP-binding cassette transporter, MsbA. Recent structures of MsbA and related transporters have provided insights into the molecular basis of active lipid transport; however, structural information about their pharmacological modulation remains limited. Here we report the 2.9 Å resolution structure of MsbA in complex with G907, a selective small-molecule antagonist with bactericidal activity, revealing an unprecedented mechanism of ABC transporter inhibition. G907 traps MsbA in an inward-facing, lipopolysaccharide-bound conformation by wedging into an architecturally conserved transmembrane pocket. A second allosteric mechanism of antagonism occurs through structural and functional uncoupling of the nucleotide-binding domains. This study establishes a framework for the selective modulation of ABC transporters and provides rational avenues for the design of new antibiotics and other therapeutics targeting this protein family.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Transportadoras de Casetes de Unión a ATP/química , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Quinolinas/química , Quinolinas/farmacología , Transportadoras de Casetes de Unión a ATP/metabolismo , Regulación Alostérica/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Sitios de Unión/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Escherichia coli/química , Hidrocarburos/química , Hidrocarburos/metabolismo , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Modelos Moleculares , Dominios Proteicos/efectos de los fármacos
4.
Artículo en Inglés | MEDLINE | ID: mdl-29339384

RESUMEN

The outer membrane is an essential structural component of Gram-negative bacteria that is composed of lipoproteins, lipopolysaccharides, phospholipids, and integral ß-barrel membrane proteins. A dedicated machinery, called the Lol system, ensures proper trafficking of lipoproteins from the inner to the outer membrane. The LolCDE ABC transporter is the inner membrane component, which is essential for bacterial viability. Here, we report a novel pyrrolopyrimidinedione compound, G0507, which was identified in a phenotypic screen for inhibitors of Escherichia coli growth followed by selection of compounds that induced the extracytoplasmic σE stress response. Mutations in lolC, lolD, and lolE conferred resistance to G0507, suggesting LolCDE as its molecular target. Treatment of E. coli cells with G0507 resulted in accumulation of fully processed Lpp, an outer membrane lipoprotein, in the inner membrane. Using purified protein complexes, we found that G0507 binds to LolCDE and stimulates its ATPase activity. G0507 still binds to LolCDE harboring a Q258K substitution in LolC (LolCQ258K), which confers high-level resistance to G0507 in vivo but no longer stimulates ATPase activity. Our work demonstrates that G0507 has significant promise as a chemical probe to dissect lipoprotein trafficking in Gram-negative bacteria.


Asunto(s)
Bacterias Gramnegativas/metabolismo , Lipoproteínas/metabolismo , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Bacterias Gramnegativas/efectos de los fármacos , Lipoproteínas/genética , Mutación/genética , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética
5.
Artículo en Inglés | MEDLINE | ID: mdl-30104274

RESUMEN

There is a critical need for new antibacterial strategies to counter the growing problem of antibiotic resistance. In Gram-negative bacteria, the outer membrane (OM) provides a protective barrier against antibiotics and other environmental insults. The outer leaflet of the outer membrane is primarily composed of lipopolysaccharide (LPS). Outer membrane biogenesis presents many potentially compelling drug targets as this pathway is absent in higher eukaryotes. Most proteins involved in LPS biosynthesis and transport are essential; however, few compounds have been identified that inhibit these proteins. The inner membrane ABC transporter MsbA carries out the first essential step in the trafficking of LPS to the outer membrane. We conducted a biochemical screen for inhibitors of MsbA and identified a series of quinoline compounds that kill Escherichia coli through inhibition of its ATPase and transport activity, with no loss of activity against clinical multidrug-resistant strains. Identification of these selective inhibitors indicates that MsbA is a viable target for new antibiotics, and the compounds we identified serve as useful tools to further probe the LPS transport pathway in Gram-negative bacteria.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipopolisacáridos/metabolismo , Antibacterianos/farmacología , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Escherichia coli/efectos de los fármacos
6.
Proc Natl Acad Sci U S A ; 109(36): 14393-8, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22908259

RESUMEN

Members of the class B family of G protein-coupled receptors (GPCRs) bind peptide hormones and have causal roles in many diseases, ranging from diabetes and osteoporosis to anxiety. Although peptide, small-molecule, and antibody inhibitors of these GPCRs have been identified, structure-based descriptions of receptor antagonism are scarce. Here we report the mechanisms of glucagon receptor inhibition by blocking antibodies targeting the receptor's extracellular domain (ECD). These studies uncovered a role for the ECD as an intrinsic negative regulator of receptor activity. The crystal structure of the ECD in complex with the Fab fragment of one antibody, mAb1, reveals that this antibody inhibits glucagon receptor by occluding a surface extending across the entire hormone-binding cleft. A second antibody, mAb23, blocks glucagon binding and inhibits basal receptor activity, indicating that it is an inverse agonist and that the ECD can negatively regulate receptor activity independent of ligand binding. Biochemical analyses of receptor mutants in the context of a high-resolution ECD structure show that this previously unrecognized inhibitory activity of the ECD involves an interaction with the third extracellular loop of the receptor and suggest that glucagon-mediated structural changes in the ECD accompany receptor activation. These studies have implications for the design of drugs to treat class B GPCR-related diseases, including the potential for developing novel allosteric regulators that target the ECDs of these receptors.


Asunto(s)
Modelos Moleculares , Conformación Proteica , Receptores de Glucagón/química , Receptores de Glucagón/metabolismo , Secuencia de Aminoácidos , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/farmacología , Western Blotting , Línea Celular , Cromatografía de Afinidad , Cristalografía , Ensayo de Inmunoadsorción Enzimática , Humanos , Fragmentos Fab de Inmunoglobulinas/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Estructura Terciaria de Proteína/genética , Receptores de Glucagón/antagonistas & inhibidores
7.
J Biol Chem ; 288(50): 36168-78, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24189067

RESUMEN

Elevated glucagon levels and increased hepatic glucagon receptor (GCGR) signaling contribute to hyperglycemia in type 2 diabetes. We have identified a monoclonal antibody that inhibits GCGR, a class B G-protein coupled receptor (GPCR), through a unique allosteric mechanism. Receptor inhibition is mediated by the binding of this antibody to two distinct sites that lie outside of the glucagon binding cleft. One site consists of a patch of residues that are surface-exposed on the face of the extracellular domain (ECD) opposite the ligand-binding cleft, whereas the second binding site consists of residues in the αA helix of the ECD. A docking model suggests that the antibody does not occlude the ligand-binding cleft. We solved the crystal structure of GCGR ECD containing a naturally occurring G40S mutation and found a shift in the register of the αA helix that prevents antibody binding. We also found that alterations in the αA helix impact the normal function of GCGR. We present a model for the allosteric inhibition of GCGR by a monoclonal antibody that may form the basis for the development of allosteric modulators for the treatment of diabetes and other class B GPCR-related diseases.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Receptores de Glucagón/química , Receptores de Glucagón/inmunología , Regulación Alostérica , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Espacio Extracelular/metabolismo , Humanos , Masculino , Ratones , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Receptores de Glucagón/antagonistas & inhibidores
8.
J Biol Chem ; 288(37): 26926-43, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-23897821

RESUMEN

Histone deacetylases (HDACs) are critical in the control of gene expression, and dysregulation of their activity has been implicated in a broad range of diseases, including cancer, cardiovascular, and neurological diseases. HDAC inhibitors (HDACi) employing different zinc chelating functionalities such as hydroxamic acids and benzamides have shown promising results in cancer therapy. Although it has also been suggested that HDACi with increased isozyme selectivity and potency may broaden their clinical utility and minimize side effects, the translation of this idea to the clinic remains to be investigated. Moreover, a detailed understanding of how HDACi with different pharmacological properties affect biological functions in vitro and in vivo is still missing. Here, we show that a panel of benzamide-containing HDACi are slow tight-binding inhibitors with long residence times unlike the hydroxamate-containing HDACi vorinostat and trichostatin-A. Characterization of changes in H2BK5 and H4K14 acetylation following HDACi treatment in the neuroblastoma cell line SH-SY5Y revealed that the timing and magnitude of histone acetylation mirrored both the association and dissociation kinetic rates of the inhibitors. In contrast, cell viability and microarray gene expression analysis indicated that cell death induction and changes in transcriptional regulation do not correlate with the dissociation kinetic rates of the HDACi. Therefore, our study suggests that determining how the selective and kinetic inhibition properties of HDACi affect cell function will help to evaluate their therapeutic utility.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Inhibidores de Histona Desacetilasas/química , Histonas/química , Acetilación , Benzamidas/química , Unión Competitiva , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Ácidos Hidroxámicos/química , Concentración 50 Inhibidora , Cinética , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , Piridinas/química , Transcripción Genética , Vorinostat
9.
Nature ; 440(7085): 833-7, 2006 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-16598263

RESUMEN

The magnesium ion, Mg2+, is essential for myriad biochemical processes and remains the only major biological ion whose transport mechanisms remain unknown. The CorA family of magnesium transporters is the primary Mg2+ uptake system of most prokaryotes and a functional homologue of the eukaryotic mitochondrial magnesium transporter. Here we determine crystal structures of the full-length Thermotoga maritima CorA in an apparent closed state and its isolated cytoplasmic domain at 3.9 A and 1.85 A resolution, respectively. The transporter is a funnel-shaped homopentamer with two transmembrane helices per monomer. The channel is formed by an inner group of five helices and putatively gated by bulky hydrophobic residues. The large cytoplasmic domain forms a funnel whose wide mouth points into the cell and whose walls are formed by five long helices that are extensions of the transmembrane helices. The cytoplasmic neck of the pore is surrounded, on the outside of the funnel, by a ring of highly conserved positively charged residues. Two negatively charged helices in the cytoplasmic domain extend back towards the membrane on the outside of the funnel and abut the ring of positive charge. An apparent Mg2+ ion was bound between monomers at a conserved site in the cytoplasmic domain, suggesting a mechanism to link gating of the pore to the intracellular concentration of Mg2+.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Transporte de Catión/química , Cationes Bivalentes/metabolismo , Magnesio/metabolismo , Thermotoga maritima/química , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Cristalización , Cristalografía por Rayos X , Canales Iónicos/química , Canales Iónicos/metabolismo , Modelos Moleculares , Estructura Secundaria de Proteína , Electricidad Estática
10.
J Med Chem ; 65(5): 4085-4120, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35184554

RESUMEN

The dramatic increase in the prevalence of multi-drug resistant Gram-negative bacterial infections and the simultaneous lack of new classes of antibiotics is projected to result in approximately 10 million deaths per year by 2050. We report on efforts to target the Gram-negative ATP-binding cassette (ABC) transporter MsbA, an essential inner membrane protein that transports lipopolysaccharide from the inner leaflet to the periplasmic face of the inner membrane. We demonstrate the improvement of a high throughput screening hit into compounds with on-target single digit micromolar (µM) minimum inhibitory concentrations against wild-type uropathogenic Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae. A 2.98 Å resolution X-ray crystal structure of MsbA complexed with an inhibitor revealed a novel mechanism for inhibition of an ABC transporter. The identification of a fully encapsulated membrane binding site in Gram-negative bacteria led to unique physicochemical property requirements for wild-type activity.


Asunto(s)
Escherichia coli , Lipopolisacáridos , Transportadoras de Casetes de Unión a ATP , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Klebsiella pneumoniae/metabolismo , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología
11.
Nat Cell Biol ; 5(6): 513-9, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12766772

RESUMEN

The mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and phosphatidylinositol-3-OH kinase (PI3K)/Akt pathways are involved in the regulatory mechanisms of several cellular processes including proliferation, differentiation and apoptosis. Here we show that during chick, mouse and zebrafish limb/fin development, a known MAPK/ERK regulator, Mkp3, is induced in the mesenchyme by fibroblast growth factor 8 (FGF8) signalling, through the PI3K/Akt pathway. This correlates with a high level of phosphorylated ERK in the apical ectodermal ridge (AER), where Mkp3 expression is excluded. Conversely, phosphorylated Akt is detected only in the mesenchyme. Constitutively active Mek1, as well as the downregulation of Mkp3 by small interfering RNA (siRNA), induced apoptosis in the mesenchyme. This suggests that MKP3 has a key role in mediating the proliferative, anti-apoptotic signalling of AER-derived FGF8.


Asunto(s)
Extremidades/embriología , Factores de Crecimiento de Fibroblastos/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal , Animales , Apoptosis , Embrión de Pollo , Fosfatasa 6 de Especificidad Dual , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Activación Enzimática , Factor 8 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Sistema de Señalización de MAP Quinasas , Ratones , Datos de Secuencia Molecular , Morfogénesis , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Pez Cebra
12.
Biochemistry ; 49(9): 1862-72, 2010 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-20099900

RESUMEN

The calcitonin gene-related peptide (CGRP) receptor is a heterodimer of two membrane proteins: calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). CLR is a class B G-protein-coupled receptor (GPCR), possessing a characteristic large amino-terminal extracellular domain (ECD) important for ligand recognition and binding. Dimerization of CLR with RAMP1 provides specificity for CGRP versus related agonists. Here we report the expression, purification, and refolding of a soluble form of the CGRP receptor comprising a heterodimer of the CLR and RAMP1 ECDs. The extracellular protein domains corresponding to residues 23-133 of CLR and residues 26-117 of RAMP1 were shown to be sufficient for formation of a stable, monodisperse complex. The binding affinity of the purified ECD complex for the CGRP peptide was significantly lower than that of the native receptor (IC(50) of 12 microM for the purified ECD complex vs 233 pM for membrane-bound CGRP receptor), indicating that other regions of CLR and/or RAMP1 are important for peptide agonist binding. However, high-affinity binding to known potent and specific nonpeptide antagonists of the CGRP receptor, including olcegepant and telcagepant (K(D) < 0.02 muM), as well as N-terminally truncated peptides and peptide analogues (140 nM to 1.62 microM) was observed.


Asunto(s)
Espacio Extracelular/química , Pliegue de Proteína , Receptores de Péptido Relacionado con el Gen de Calcitonina/química , Receptores de Calcitonina/química , Secuencia de Aminoácidos , Unión Competitiva , Proteína Similar al Receptor de Calcitonina , Línea Celular Tumoral , Cristalografía por Rayos X , Dimerización , Espacio Extracelular/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ligandos , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Proteína 1 Modificadora de la Actividad de Receptores , Proteínas Modificadoras de la Actividad de Receptores , Receptores de Calcitonina/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/biosíntesis , Receptores de Péptido Relacionado con el Gen de Calcitonina/genética , Receptores de Péptido Relacionado con el Gen de Calcitonina/aislamiento & purificación , Solubilidad
13.
Cell Chem Biol ; 27(3): 306-313.e4, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-31732432

RESUMEN

Voltage-gated sodium (Nav) channels respond to changes in the membrane potential of excitable cells through the concerted action of four voltage-sensor domains (VSDs). Subtype Nav1.7 plays an important role in the propagation of signals in pain-sensing neurons and is a target for the clinical development of novel analgesics. Certain inhibitory cystine knot (ICK) peptides produced by venomous animals potently modulate Nav1.7; however, the molecular mechanisms underlying their selective binding and activity remain elusive. This study reports on the design of a library of photoprobes based on the potent spider toxin Huwentoxin-IV and the determination of the toxin binding interface on VSD2 of Nav1.7 through a photocrosslinking and tandem mass spectrometry approach. Our Huwentoxin-IV probes selectively crosslink to extracellular loop S1-S2 and helix S3 of VSD2 in a chimeric channel system. Our results provide a strategy that will enable mapping of sites of interaction of other ICK peptides on Nav channels.


Asunto(s)
Reactivos de Enlaces Cruzados/farmacología , Sondas Moleculares/farmacología , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Venenos de Araña/farmacología , Sitios de Unión/efectos de los fármacos , Reactivos de Enlaces Cruzados/síntesis química , Reactivos de Enlaces Cruzados/química , Humanos , Modelos Moleculares , Sondas Moleculares/síntesis química , Sondas Moleculares/química , Canal de Sodio Activado por Voltaje NAV1.7/química , Procesos Fotoquímicos , Venenos de Araña/síntesis química , Venenos de Araña/química
14.
Science ; 367(6483): 1224-1230, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32079680

RESUMEN

Cluster of differentiation 20 (CD20) is a B cell membrane protein that is targeted by monoclonal antibodies for the treatment of malignancies and autoimmune disorders but whose structure and function are unknown. Rituximab (RTX) has been in clinical use for two decades, but how it activates complement to kill B cells remains poorly understood. We obtained a structure of CD20 in complex with RTX, revealing CD20 as a compact double-barrel dimer bound by two RTX antigen-binding fragments (Fabs), each of which engages a composite epitope and an extensive homotypic Fab:Fab interface. Our data suggest that RTX cross-links CD20 into circular assemblies and lead to a structural model for complement recruitment. Our results further highlight the potential relevance of homotypic Fab:Fab interactions in targeting oligomeric cell-surface markers.


Asunto(s)
Antígenos CD20/química , Rituximab/química , Antígenos CD20/inmunología , Proteínas del Sistema Complemento/inmunología , Microscopía por Crioelectrón , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Conformación Proteica , Multimerización de Proteína , Rituximab/inmunología
15.
FEBS Lett ; 594(23): 3767-3775, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32978974

RESUMEN

Members of the ATP-binding cassette (ABC) transporter superfamily translocate a broad spectrum of chemically diverse substrates. While their eponymous ATP-binding cassette in the nucleotide-binding domains (NBDs) is highly conserved, their transmembrane domains (TMDs) forming the translocation pathway exhibit distinct folds and topologies, suggesting that during evolution the ancient motor domains were combined with different transmembrane mechanical systems to orchestrate a variety of cellular processes. In recent years, it has become increasingly evident that the distinct TMD folds are best suited to categorize the multitude of ABC transporters. We therefore propose a new ABC transporter classification that is based on structural homology in the TMDs.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/clasificación , Dominios Proteicos , Transportadoras de Casetes de Unión a ATP/metabolismo , Pliegue de Proteína
16.
Methods Mol Biol ; 2025: 389-402, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31267463

RESUMEN

Integral membrane proteins (MP) are implicated in many disease processes and are the primary targets of numerous marketed drugs. Despite recent advances in the areas of MP solubilization, stabilization, and reconstitution, it remains a time-consuming task to identify the combination of constructs and purification conditions that will enable MP structure-function studies outside of the lipid bilayer. In this chapter, we describe a strategy for rapidly identifying and optimizing the solubilization and purification conditions for nearly any recombinant MP, based on the use of a noninvasive fluorescent probe (His-Glow) that specifically binds to the common hexahistidine affinity tag of expressed targets. This His-Glow approach permits fluorescent size-exclusion chromatography (FSEC) without the need for green fluorescent protein (GFP) fusion. A two-stage detergent screening strategy is employed at the solubilization stage, whereby appropriate detergent families are identified first, followed by optimization within these families. Screening up to 96 unique combinations of solubilization conditions and constructs can be achieved in less than 24 h. At the outset of each new project, we screen six different detergents for each construct and the subsequent implementation of a simple thermostability challenge further aids in the identification of constructs and conditions suitable for large-scale production. Our strategy streamlines the parallel optimization of appropriate production conditions for multiple MP targets to rapidly enable downstream biochemical, immunization, or structural studies.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Recombinantes/metabolismo , Animales , Cromatografía en Gel , Proteínas Fluorescentes Verdes/genética , Histidina/química , Histidina/metabolismo , Humanos , Proteínas de la Membrana/genética , Oligopéptidos/química , Oligopéptidos/metabolismo , Proteínas Recombinantes/genética
17.
Elife ; 82019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31237236

RESUMEN

Outer membrane proteins (OMPs) in Gram-negative bacteria dictate permeability of metabolites, antibiotics, and toxins. Elucidating the structure-function relationships governing OMPs within native membrane environments remains challenging. We constructed a diverse library of >3000 monoclonal antibodies to assess the roles of extracellular loops (ECLs) in LptD, an essential OMP that inserts lipopolysaccharide into the outer membrane of Escherichia coli. Epitope binning and mapping experiments with LptD-loop-deletion mutants demonstrated that 7 of the 13 ECLs are targeted by antibodies. Only ECLs inaccessible to antibodies were required for the structure or function of LptD. Our results suggest that antibody-accessible loops evolved to protect key extracellular regions of LptD, but are themselves dispensable. Supporting this hypothesis, no α-LptD antibody interfered with essential functions of LptD. Our experimental workflow enables structure-function studies of OMPs in native cellular environments, provides unexpected insight into LptD, and presents a method to assess the therapeutic potential of antibody targeting.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Animales , Antibacterianos/farmacología , Sitios de Unión , Mapeo Epitopo , Epítopos/metabolismo , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Ratones Endogámicos BALB C , Estructura Secundaria de Proteína , Ratas Sprague-Dawley , Relación Estructura-Actividad
18.
Methods Mol Biol ; 426: 277-95, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18542871

RESUMEN

Approximately one third of the proteins encoded in prokaryotic and eukaryotic genomes reside in the membrane. However, membrane proteins comprise only a minute fraction of the entries in protein structural databases. This disparity is largely due to inherent difficulties in the expression and purification of sufficient quantities of membrane targets. To begin addressing the challenges of membrane protein production for high throughput structural proteomics efforts, the authors sought to develop a simple strategy that would permit the standardization of most procedures and the exploration of large numbers of proteins. Successful methods that have yielded membrane protein crystals suitable for structure determination were surveyed first. A number of recurrent trends in the expression, solubilization, purification, and crystallization techniques were identified. Based largely on these observations, a robust strategy was then developed that rapidly identifies highly expressed membrane protein targets and simplifies their production for structural studies. This method has been used to express and purify intramembrane proteases to levels sufficient for crystallization. This strategy is a paradigm for the purification of many other membrane proteins, as discussed.


Asunto(s)
Expresión Génica , Proteínas de la Membrana/química , Proteómica/métodos , Cromatografía de Afinidad , Clonación Molecular , Cristalografía por Rayos X , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Níquel/química , Ingeniería de Proteínas , Publicaciones
19.
Sci Rep ; 8(1): 7136, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29740124

RESUMEN

Outer membrane proteins (OMPs) in Gram-negative bacteria are essential for a number of cellular functions including nutrient transport and drug efflux. Escherichia coli BamA is an essential component of the OMP ß-barrel assembly machinery and a potential novel antibacterial target that has been proposed to undergo large (~15 Å) conformational changes. Here, we explored methods to isolate anti-BamA monoclonal antibodies (mAbs) that might alter the function of this OMP and ultimately lead to bacterial growth inhibition. We first optimized traditional immunization approaches but failed to identify mAbs that altered cell growth after screening >3000 hybridomas. We then developed a "targeted boost-and-sort" strategy that combines bacterial cell immunizations, purified BamA protein boosts, and single hybridoma cell sorting using amphipol-reconstituted BamA antigen. This unique workflow improves the discovery efficiency of FACS + mAbs by >600-fold and enabled the identification of rare anti-BamA mAbs with bacterial growth inhibitory activity in the presence of a truncated lipopolysaccharide layer. These mAbs represent novel tools for dissecting the BamA-mediated mechanism of ß-barrel folding and our workflow establishes a new template for the efficient discovery of novel mAbs against other highly dynamic membrane proteins.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/aislamiento & purificación , Proteínas de la Membrana Bacteriana Externa/inmunología , Escherichia coli/inmunología , Proteínas de Escherichia coli/inmunología , Inmunización , Conformación Proteica , Pliegue de Proteína , Transporte de Proteínas/genética , Transporte de Proteínas/inmunología , Vacunación
20.
Curr Opin Struct Biol ; 45: 74-84, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27988421

RESUMEN

Voltage-gated sodium (Nav) channels initiate and propagate action potentials in excitable cells, and are frequently dysregulated or mutated in human disease. Despite decades of intense physiological and biophysical research, eukaryotic Nav channels have so far eluded high-resolution structure determination because of their biochemical complexity. Recently, simpler bacterial voltage-gated sodium (BacNav) channels have provided templates to understand the structural basis of voltage-dependent activation, inactivation, ion selectivity, and drug block in eukaryotic Nav and related voltage-gated calcium (Cav) channels. Further breakthroughs employing BacNav channels have also enabled visualization of bound small molecule modulators that can guide the rational design of next generation therapeutics. This review will highlight the emerging structural biology of BacNav channels and its contribution to our understanding of the gating, ion selectivity, and pharmacological regulation of eukaryotic Nav (and Cav) channels.


Asunto(s)
Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/metabolismo , Humanos , Activación del Canal Iónico/efectos de los fármacos , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA