Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(26): e2110364119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35733267

RESUMEN

Modeling fire spread as an infection process is intuitive: An ignition lights a patch of fuel, which infects its neighbor, and so on. Infection models produce nonlinear thresholds, whereby fire spreads only when fuel connectivity and infection probability are sufficiently high. These thresholds are fundamental both to managing fire and to theoretical models of fire spread, whereas applied fire models more often apply quasi-empirical approaches. Here, we resolve this tension by quantifying thresholds in fire spread locally, using field data from individual fires (n = 1,131) in grassy ecosystems across a precipitation gradient (496 to 1,442 mm mean annual precipitation) and evaluating how these scaled regionally (across 533 sites) and across time (1989 to 2012 and 2016 to 2018) using data from Kruger National Park in South Africa. An infection model captured observed patterns in individual fire spread better than competing models. The proportion of the landscape that burned was well described by measurements of grass biomass, fuel moisture, and vapor pressure deficit. Regionally, averaging across variability resulted in quasi-linear patterns. Altogether, results suggest that models aiming to capture fire responses to global change should incorporate nonlinear fire spread thresholds but that linear approximations may sufficiently capture medium-term trends under a stationary climate.


Asunto(s)
Ecosistema , Poaceae , Incendios Forestales , Clima , Cambio Climático , Modelos Teóricos , Sudáfrica
2.
Science ; 382(6676): 1282-1286, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38096373

RESUMEN

The white-bellied pangolin (Phataginus tricuspis) is the world's most trafficked mammal and is at risk of extinction. Reducing the illegal wildlife trade requires an understanding of its origins. Using a genomic approach for tracing confiscations and analyzing 111 samples collected from known geographic localities in Africa and 643 seized scales from Asia between 2012 and 2018, we found that poaching pressures shifted over time from West to Central Africa. Recently, Cameroon's southern border has emerged as a site of intense poaching. Using data from seizures representing nearly 1 million African pangolins, we identified Nigeria as one important hub for trafficking, where scales are amassed and transshipped to markets in Asia. This origin-to-destination approach offers new opportunities to disrupt the illegal wildlife trade and to guide anti-trafficking measures.


Asunto(s)
Crimen , Extinción Biológica , Genómica , Pangolines , Comercio de Vida Silvestre , Animales , Asia , Genoma , Nigeria , Crimen/prevención & control , Camerún
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA