Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Cell ; 83(15): 2792-2809.e9, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37478847

RESUMEN

To maintain genome integrity, cells must accurately duplicate their genome and repair DNA lesions when they occur. To uncover genes that suppress DNA damage in human cells, we undertook flow-cytometry-based CRISPR-Cas9 screens that monitored DNA damage. We identified 160 genes whose mutation caused spontaneous DNA damage, a list enriched in essential genes, highlighting the importance of genomic integrity for cellular fitness. We also identified 227 genes whose mutation caused DNA damage in replication-perturbed cells. Among the genes characterized, we discovered that deoxyribose-phosphate aldolase DERA suppresses DNA damage caused by cytarabine (Ara-C) and that GNB1L, a gene implicated in 22q11.2 syndrome, promotes biogenesis of ATR and related phosphatidylinositol 3-kinase-related kinases (PIKKs). These results implicate defective PIKK biogenesis as a cause of some phenotypes associated with 22q11.2 syndrome. The phenotypic mapping of genes that suppress DNA damage therefore provides a rich resource to probe the cellular pathways that influence genome maintenance.


Asunto(s)
Sistemas CRISPR-Cas , Daño del ADN , Humanos , Mutación , Reparación del ADN , Fenotipo
2.
Mol Cell ; 81(15): 3128-3144.e7, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34216544

RESUMEN

Mutations in BRCA1 or BRCA2 (BRCA) is synthetic lethal with poly(ADP-ribose) polymerase inhibitors (PARPi). Lethality is thought to derive from DNA double-stranded breaks (DSBs) necessitating BRCA function in homologous recombination (HR) and/or fork protection (FP). Here, we report instead that toxicity derives from replication gaps. BRCA1- or FANCJ-deficient cells, with common repair defects but distinct PARPi responses, reveal gaps as a distinguishing factor. We further uncouple HR, FP, and fork speed from PARPi response. Instead, gaps characterize BRCA-deficient cells, are diminished upon resistance, restored upon resensitization, and, when exposed, augment PARPi toxicity. Unchallenged BRCA1-deficient cells have elevated poly(ADP-ribose) and chromatin-associated PARP1, but aberrantly low XRCC1 consistent with defects in backup Okazaki fragment processing (OFP). 53BP1 loss resuscitates OFP by restoring XRCC1-LIG3 that suppresses the sensitivity of BRCA1-deficient cells to drugs targeting OFP or generating gaps. We highlight gaps as a determinant of PARPi toxicity changing the paradigm for synthetic lethal interactions.


Asunto(s)
Proteína BRCA1/genética , Replicación del ADN/efectos de los fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Animales , Línea Celular , Cisplatino/farmacología , ADN/genética , ADN/metabolismo , ADN de Cadena Simple/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Recombinación Homóloga/efectos de los fármacos , Humanos , Ratones Endogámicos NOD , ARN Helicasas/genética , Recombinasa Rad51/genética , Proteína de Replicación A/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética
4.
bioRxiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38260529

RESUMEN

Single-stranded DNA gaps are postulated to be fundamental to the mechanism of anti-cancer drugs. Gaining insights into their induction could therefore be pivotal for advancing therapeutic strategies. For poly (ADP-ribose) polymerase inhibitors (PARPi) to be effective, the presence of FANCJ helicase is required. However, the relationship between FANCJ dependent gaps and PARP1 catalytic inhibition or trapping-both linked to PARPi toxicity in BRCA deficient cells-is yet to be elucidated. Here, we find that the efficacy of PARPi is contingent on S-phase PARP1 activity, which is compromised in FANCJ deficient cells because PARP1, along with MSH2, is "sequestered" by G-quadruplexes. PARP1's replication activity is also diminished in cells missing a FANCJ-MLH1 interaction, but in such cells, depleting MSH2 can release sequestered PARP1, restoring PARPi-induced gaps and sensitivity. Our observations indicate that sequestered and trapped PARP1 are different chromatin-bound forms, with FANCJ loss increasing PARPi resistance in cells susceptible to canonical PARP1 trapping. However, in BRCA1 null cells, the loss of FANCJ mirrors the effects of PARP1 loss or inhibition, with the common detrimental factor being the loss of PARP1 activity during DNA replication, not trapping. These insights underline the crucial role of PARP1 activity during DNA replication in BRCA deficient cells and emphasize the importance of understanding drug mechanisms for enhancing precision medicine.

5.
EMBO Rep ; 12(7): 705-12, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21637299

RESUMEN

To identify key connections between DNA-damage repair and checkpoint pathways, we performed RNA interference screens for regulators of the ionizing radiation-induced G2 checkpoint, and we identified the breast cancer gene BRCA2. The checkpoint was also abrogated following depletion of PALB2, an interaction partner of BRCA2. BRCA2 and PALB2 depletion led to premature checkpoint abrogation and earlier activation of the AURORA A-PLK1 checkpoint-recovery pathway. These results indicate that the breast cancer tumour suppressors and homologous recombination repair proteins BRCA2 and PALB2 are main regulators of G2 checkpoint maintenance following DNA-damage.


Asunto(s)
Proteína BRCA2/metabolismo , Fase G2/fisiología , Ensayos Analíticos de Alto Rendimiento , Proteínas Nucleares/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteína BRCA2/genética , Línea Celular , Daño del ADN , Proteína del Grupo de Complementación N de la Anemia de Fanconi , Fase G2/genética , Biblioteca de Genes , Células HCT116 , Células HeLa , Humanos , Proteínas Nucleares/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Recombinación Genética , Transducción de Señal/genética , Proteínas Supresoras de Tumor/genética
6.
J Clin Invest ; 130(8): 4069-4080, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32379725

RESUMEN

Haploinsufficiency of factors governing genome stability underlies hereditary breast and ovarian cancer. One significant pathway that is disabled as a result is homologous recombination repair (HRR). With the aim of identifying new candidate genes, we examined early-onset breast cancer patients negative for BRCA1 and BRCA2 pathogenic variants. Here, we focused on CtIP (RBBP8 gene), which mediates HRR through the end resection of DNA double-strand breaks (DSBs). Notably, these patients exhibited a number of rare germline RBBP8 variants. Functional analysis revealed that these variants did not affect DNA DSB end resection efficiency. However, expression of a subset of variants led to deleterious nucleolytic degradation of stalled DNA replication forks in a manner similar to that of cells lacking BRCA1 or BRCA2. In contrast to BRCA1 and BRCA2, CtIP deficiency promoted the helicase-driven destabilization of RAD51 nucleofilaments at damaged DNA replication forks. Taken together, our work identifies CtIP as a critical regulator of DNA replication fork integrity, which, when compromised, may predispose to the development of early-onset breast cancer.


Asunto(s)
Neoplasias de la Mama , Replicación del ADN , ADN de Neoplasias , Endodesoxirribonucleasas , Mutación de Línea Germinal , Proteínas de Neoplasias , Adulto , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Roturas del ADN de Doble Cadena , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Femenino , Humanos , Células MCF-7 , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
7.
Cell Rep ; 10(10): 1749-1757, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25772361

RESUMEN

DNA replication fork perturbation is a major challenge to the maintenance of genome integrity. It has been suggested that processing of stalled forks might involve fork regression, in which the fork reverses and the two nascent DNA strands anneal. Here, we show that FBH1 catalyzes regression of a model replication fork in vitro and promotes fork regression in vivo in response to replication perturbation. Cells respond to fork stalling by activating checkpoint responses requiring signaling through stress-activated protein kinases. Importantly, we show that FBH1, through its helicase activity, is required for early phosphorylation of ATM substrates such as CHK2 and CtIP as well as hyperphosphorylation of RPA. These phosphorylations occur prior to apparent DNA double-strand break formation. Furthermore, FBH1-dependent signaling promotes checkpoint control and preserves genome integrity. We propose a model whereby FBH1 promotes early checkpoint signaling by remodeling of stalled DNA replication forks.

8.
Nat Commun ; 6: 5800, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25557911

RESUMEN

Cells respond to DNA damage by activating cell cycle checkpoints to delay proliferation and facilitate DNA repair. Here, to uncover new checkpoint regulators, we perform RNA interference screening targeting genes involved in ubiquitylation processes. We show that the F-box protein cyclin F plays an important role in checkpoint control following ionizing radiation. Cyclin F-depleted cells initiate checkpoint signalling after ionizing radiation, but fail to maintain G2 phase arrest and progress into mitosis prematurely. Importantly, cyclin F suppresses the B-Myb-driven transcriptional programme that promotes accumulation of crucial mitosis-promoting proteins. Cyclin F interacts with B-Myb via the cyclin box domain. This interaction is important to suppress cyclin A-mediated phosphorylation of B-Myb, a key step in B-Myb activation. In summary, we uncover a regulatory mechanism linking the F-box protein cyclin F with suppression of the B-Myb/cyclin A pathway to ensure a DNA damage-induced checkpoint response in G2.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Ciclinas/metabolismo , Reparación del ADN/fisiología , Transactivadores/metabolismo , Línea Celular Tumoral , Cartilla de ADN/genética , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Células HEK293 , Humanos , Immunoblotting , Inmunoprecipitación , Luciferasas , Mutagénesis Sitio-Dirigida , Interferencia de ARN , ARN Interferente Pequeño/genética , Ubiquitinación
9.
Biomolecules ; 3(1): 72-4, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26791467

RESUMEN

We have discovered an error in our paper published in Biomolecules [1], in Figure 1 on page 589. The protein names ATR and ATRIP have been swapped. A corrected version of the Figure 1 is provided below. [...].

10.
Nat Commun ; 4: 1423, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23361013

RESUMEN

The molecular events occurring following the disruption of DNA replication forks are poorly characterized, despite extensive use of replication inhibitors such as hydroxyurea in the treatment of malignancies. Here, we identify a key role for the FBH1 helicase in mediating DNA double-strand break formation following replication inhibition. We show that FBH1-deficient cells are resistant to killing by hydroxyurea, and exhibit impaired activation of the pro-apoptotic factor p53, consistent with decreased DNA double-strand break formation. Similar findings were obtained in murine ES cells carrying disrupted alleles of Fbh1. We also show that FBH1 through its helicase activity co-operates with the MUS81 nuclease in promoting the endonucleolytic DNA cleavage following prolonged replication stress. Accordingly, MUS81 and EME1-depleted cells show increased resistance to the cytotoxic effects of replication stress. Our data suggest that FBH1 helicase activity is required to eliminate cells with excessive replication stress through the generation of MUS81-induced DNA double-strand breaks.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Helicasas/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Proteínas F-Box/metabolismo , Estrés Fisiológico , Alelos , Animales , Southern Blotting , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Roturas del ADN de Doble Cadena/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Doxiciclina/farmacología , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/enzimología , Humanos , Ratones , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos
11.
Biomolecules ; 2(4): 579-607, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-24970150

RESUMEN

The maintenance of genome integrity is important for normal cellular functions, organism development and the prevention of diseases, such as cancer. Cellular pathways respond immediately to DNA breaks leading to the initiation of a multi-facetted DNA damage response, which leads to DNA repair and cell cycle arrest. Cell cycle checkpoints provide the cell time to complete replication and repair the DNA damage before it can continue to the next cell cycle phase. The G2/M checkpoint plays an especially important role in ensuring the propagation of error-free copies of the genome to each daughter cell. Here, we review recent progress in our understanding of DNA repair and checkpoint pathways in late S and G2 phases. This review will first describe the current understanding of normal cell cycle progression through G2 phase to mitosis. It will also discuss the DNA damage response including cell cycle checkpoint control and DNA double-strand break repair. Finally, we discuss the emerging concept that DNA repair pathways play a major role in the G2/M checkpoint pathway thereby blocking cell division as long as DNA lesions are present.

12.
J Cell Biol ; 197(7): 869-76, 2012 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-22733999

RESUMEN

To prevent accumulation of mutations, cells respond to DNA lesions by blocking cell cycle progression and initiating DNA repair. Homology-directed repair of DNA breaks requires CtIP-dependent resection of the DNA ends, which is thought to play a key role in activation of ATR (ataxia telangiectasia mutated and Rad3 related) and CHK1 kinases to induce the cell cycle checkpoint. In this paper, we show that CHK1 was rapidly and robustly activated before detectable end resection. Moreover, we show that the key resection factor CtIP was dispensable for initial ATR-CHK1 activation after DNA damage by camptothecin and ionizing radiation. In contrast, we find that DNA end resection was critically required for sustained ATR-CHK1 checkpoint signaling and for maintaining both the intra-S- and G2-phase checkpoints. Consequently, resection-deficient cells entered mitosis with persistent DNA damage. In conclusion, we have uncovered a temporal program of checkpoint activation, where CtIP-dependent DNA end resection is required for sustained checkpoint signaling.


Asunto(s)
Proteínas Portadoras/metabolismo , Puntos de Control del Ciclo Celular , Daño del ADN , ADN/metabolismo , Proteínas Nucleares/metabolismo , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , Endodesoxirribonucleasas , Humanos , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
13.
J Cell Biol ; 192(1): 43-54, 2011 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-21220508

RESUMEN

The eukaryotic cell cycle is regulated by multiple ubiquitin-mediated events, such as the timely destruction of cyclins and replication licensing factors. The histone H4 methyltransferase SET8 (Pr-Set7) is required for chromosome compaction in mitosis and for maintenance of genome integrity. In this study, we show that SET8 is targeted for degradation during S phase by the CRL4(CDT2) ubiquitin ligase in a proliferating cell nuclear antigen (PCNA)-dependent manner. SET8 degradation requires a conserved degron responsible for its interaction with PCNA and recruitment to chromatin where ubiquitylation occurs. Efficient degradation of SET8 at the onset of S phase is required for the regulation of chromatin compaction status and cell cycle progression. Moreover, the turnover of SET8 is accelerated after ultraviolet irradiation dependent on the CRL4(CDT2) ubiquitin ligase and PCNA. Removal of SET8 supports the modulation of chromatin structure after DNA damage. These results demonstrate a novel regulatory mechanism, linking for the first time the ubiquitin-proteasome system with rapid degradation of a histone methyltransferase to control cell proliferation.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Procesamiento Proteico-Postraduccional/efectos de la radiación , Fase S/efectos de la radiación , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de la radiación , Rayos Ultravioleta , Secuencia de Aminoácidos , Línea Celular , Daño del ADN , Fase G1/efectos de la radiación , N-Metiltransferasa de Histona-Lisina/química , Humanos , Datos de Secuencia Molecular , Unión Proteica/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA