Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Br J Nutr ; 128(6): 1013-1028, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34605388

RESUMEN

Metabolic impairments associated with type 2 diabetes, including insulin resistance and loss of glycaemic control, disproportionately impact the elderly. Lifestyle interventions, such as manipulation of dietary fat quality (i.e. fatty acid (FA) composition), have been shown to favourably modulate metabolic health. Yet, whether or not chronic consumption of beneficial FAs can protect against metabolic derangements and disease risk during ageing is not well defined. We sought to evaluate whether long-term dietary supplementation of fish-, dairy- or echium-derived FAs to the average FA profile in a U.S. American diet may offset metabolic impairments in males and females during ageing. One-month-old CD-1® mice were fed isoenergetic, high-fat (40 %) diets with the fat content composed of either 100 % control fat blend (CO) or 70 % CO with 30 % fish oil, dairy fat or echium oil for 13 months. Every 3 months, parameters of glucose homoeostasis were evaluated via glucose and insulin tolerance tests. Glucose tolerance improved in males consuming a diet supplemented with fish oil or echium oil as ageing progressed, but not in females. Yet, females were more metabolically protected than males regardless of age. Additionally, Spearman correlations were performed between indices of glucose homoeostasis and previously reported measurements of diet-derived FA content in tissues and colonic bacterial composition, which also revealed sex-specific associations. This study provides evidence that long-term dietary fat quality influences risk factors of metabolic diseases during ageing in a sex-dependent manner; thus, sex is a critical factor to be considered in future dietary strategies to mitigate type 2 diabetes risk.


Asunto(s)
Diabetes Mellitus Tipo 2 , Grasas de la Dieta , Ratones , Masculino , Femenino , Animales , Aceites de Pescado , Suplementos Dietéticos , Glucosa
2.
Eur J Nutr ; 61(5): 2815-2823, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35294608

RESUMEN

PURPOSE: Gastroesophageal reflux disease (GERD) is a widely prevalent condition. High consumption of dairy foods and dietary fat are associated with worse GERD symptoms. However, existing data are inconsistent and mostly based on observational studies. The purpose of this exploratory analysis of a randomized controlled trial was to investigate the impact of low-fat and full-fat dairy food consumption on GERD symptoms. METHODS: Seventy-two participants with metabolic syndrome completed a 4-week wash-in diet during which dairy intake was limited to three servings of nonfat milk per week. Participants were then randomized to either continue the limited dairy diet or switch to a diet containing 3.3 servings per day of either low-fat or full-fat milk, yogurt and cheese for 12 weeks. Here, we report intervention effects on the frequency of acid reflux, and the frequency and severity of heartburn, exploratory endpoints assessed by a questionnaire administered before and after the 12-week intervention. RESULTS: In the per-protocol analysis (n = 63), there was no differential intervention effect on a cumulative heartburn score (p = 0.443 for the time by diet interaction in the overall repeated measures analysis of variance). Similarly, the intervention groups did not differentially affect the odds of experiencing acid regurgitation (p = 0.651). The intent-to-treat analyses (n = 72) yielded similar results. CONCLUSION: Our exploratory analyses suggest that, in men and women with the metabolic syndrome, increasing the consumption of either low-fat or full-fat dairy foods to at least three servings per day does not affect common symptoms of GERD, heartburn and acid regurgitation compared to a diet limited in dairy. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02663544, registered on January 26, 2016.


Asunto(s)
Reflujo Gastroesofágico , Síndrome Metabólico , Dieta con Restricción de Grasas , Grasas de la Dieta , Femenino , Pirosis , Humanos , Masculino
3.
J Mammary Gland Biol Neoplasia ; 26(3): 263-276, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34617201

RESUMEN

We previously showed that dietary trans-10, cis-12 conjugated linoleic acid (10,12 CLA) stimulates estrogen-independent mammary growth in young ovariectomized mice. Here we investigated the effects of in utero or postnatal exposure to cis-9, trans-11 (9,11 CLA) and 10,12 CLA on postnatal development of the mammary gland and its responsiveness to ovarian steroids. In the first experiment we fed dams different CLA prior to and during gestation, then cross fostered female pups onto control fed dams prior to assessing the histomorphology of their mammary glands. Pregnant dams in the second experiment were similarly exposed to CLA, after which their female pups were ovariectomized then treated with 17ß-estradiol (E), progesterone (P) or E + P for 5 days. In a third experiment, mature female mice were fed different CLA for 28 days prior to ovariectomy, then treated with E, P or E + P. Our data indicate that 10,12 CLA modifies the responsiveness of the mammary glands to E or E + P when exposure occurs either in utero, or postnatally. These findings underline the sensitivity of the mammary glands to dietary fatty acids and reinforce the potential for maternal nutrition to impact postnatal development of the mammary glands and their risk for developing cancer.


Asunto(s)
Grasas de la Dieta/efectos adversos , Ácidos Linoleicos Conjugados/efectos adversos , Glándulas Mamarias Animales/crecimiento & desarrollo , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal/etiología , Animales , Biomarcadores/metabolismo , Estrógenos/metabolismo , Femenino , Glándulas Mamarias Animales/metabolismo , Ratones , Ratones Endogámicos BALB C , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Progesterona/metabolismo
4.
J Nutr ; 151(7): 1779-1790, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33982087

RESUMEN

BACKGROUND: There is currently no consensus on which tissues are optimal for assessing specific diet-derived fatty acids (FAs) as biomarkers for long-term dietary studies. OBJECTIVES: This study measured the content of unique diet-derived FAs from dairy, echium, and fish in tissues (adipose, muscle, liver, erythrocyte membranes, and plasma phospholipids, cholesterol esters, triglycerides, and free fatty acids) after long-term feeding in CD-1 mice. METHODS: Beginning at weaning, mice (n = 10-11/sex/diet) were fed 1 of 4 diets (40% kcal/total energy) that only differed in FA composition: control fat blend (CON), reflecting the FA profile of the average US American diet, or CON supplemented with 30% of fish oil (FO), dairy fat (DF), or echium oil (EO). After 13 mo, tissues were collected to determine FAs via gas-liquid chromatography. Tissue FAs were analyzed via 2-factor ANOVA, and relationships between FA intake and tissue content were assessed with Spearman correlations. RESULTS: As anticipated, 20:5n-3 (ω-3) tissue content was ≤32-fold greater in FO- compared with CON-fed mice (P < 0.05). In addition, 20:5n-3 intake strongly correlated with its content in all tissues (ρ = 0.67-0.76; P < 0.05). Echium oil intake also influenced tissue FA content in mice as expected. For example, 18:3n-6 was ≤25-fold greater in adipose, muscle, and liver tissues of EO-fed compared with CON-fed mice (P < 0.05). Tissue content of FAs typically considered biomarkers of dairy fat intake (15:0, 16:1 t9, and 17:0) was often not greater in mice fed DF than other diet groups, although 18:2 c9, t11 content was ≤6-fold greater in tissues from DF-fed compared with CON-fed mice (P < 0.05). The content of dairy-derived FAs in blood fractions of females was up to 2-fold greater compared with males, whereas docosapentaenoic acid content was up to 1-fold greater in all blood fractions and in liver tissue of males compared with females (P < 0.05). In adipose, muscle, and liver tissue, the content of γ-linolenic acid and stearidonic acid was less than 1-fold greater in females than in males (P < 0.05). CONCLUSIONS: Our study indicates that the distribution of dietary FAs is tissue and sex dependent in aged CD-1 mice. Research using FA biomarkers should assess a combination of FA biomarkers to accurately validate patterns of FA intake and source.


Asunto(s)
Ácidos Grasos , Aceites de Pescado , Animales , Biomarcadores , Dieta , Suplementos Dietéticos , Femenino , Masculino , Ratones
5.
J Dairy Res ; 86(2): 154-161, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31210125

RESUMEN

Grape marc (GPM) is a viticulture by-product that is rich in secondary compounds, including condensed tannins (CT), and is used as a supplement in livestock feeding practices. The aim of this study was to determine whether feeding GPM to lactating dairy cows would alter the milk proteome through changes in nitrogen (N) partitioning. Ten lactating Holstein cows were fed a total mixed ration (TMR) top-dressed with either 1.5 kg dry matter (DM)/cow/day GPM (GPM group; n = 5) or 2.0 kg DM/cow/day of a 50:50 beet pulp: soy hulls mix (control group; n = 5). Characterization of N partitioning and calculation of N partitioning was completed through analysis of plasma urea-N, urine, feces, and milk urea-N. Milk samples were collected for general composition analysis, HPLC quantification of the high abundance milk proteins (including casein isoforms, α-lactalbumin, and ß-lactoglobulin) and liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of the low abundance protein enriched milk fraction. No differences in DMI, N parameters, or calculated N partitioning were observed across treatments. Dietary treatment did not affect milk yield, milk protein or fat content or yield, or the concentrations of high abundance milk proteins quantified by HPLC analysis. Of the 127 milk proteins that were identified by LC-MS/MS analysis, 16 were affected by treatment, including plasma proteins and proteins associated with the blood-milk barrier, suggesting changes in mammary passage. Immunomodulatory proteins, including butyrophilin subfamily 1 member 1A and serum amyloid A protein, were higher in milk from GPM-fed cows. Heightened abundance of bioactive proteins in milk caused by dietary-induced shifts in mammary passage could be a feasible method to enhance the healthfulness of milk for both the milk-fed calf and human consumer. Additionally, the proteome shifts observed in this trial could provide a starting point for the identification of biomarkers suitable for use as indicators of mammary function.


Asunto(s)
Alimentación Animal/análisis , Bovinos/fisiología , Dieta/veterinaria , Proteínas de la Leche/metabolismo , Leche/química , Proteoma , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Lactancia , Proteínas de la Leche/genética , Vitis
6.
Br J Nutr ; 117(3): 377-385, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28222826

RESUMEN

Nutrition during pregnancy can impact on the susceptibility of the offspring to CVD. Postnatal consumption of trans-fatty acids (TFA), associated with partially hydrogenated vegetable oil (PHVO), increases the risk of atherosclerosis, whereas evidence for those TFA associated with ruminant-derived dairy products and meat remain equivocal. In this study, we investigate the impact of maternal consumption of dietary PHVO (P) and ruminant milk fat (R) on the development of atherosclerosis in their offspring, using the transgenic apoE*3 Leiden mouse. Dams were fed either chow (C) or one of three high-fat diets: a diet reflecting the SFA content of a 'Western' diet (W) or one enriched with either P or R. Diets were fed during either pregnancy alone or pregnancy and lactation. Weaned offspring were then transferred to an atherogenic diet for 12 weeks. Atherosclerosis was assessed as lipid staining in cross-sections of the aorta. There was a significant effect of maternal diet during pregnancy on development of atherosclerosis (P=0·013) in the offspring with those born of mothers fed R or P during pregnancy displaying smaller lesions that those fed C or W. This was not associated with changes in total or lipoprotein cholesterol. Continuing to feed P during lactation increased atherosclerosis compared with that seen in offspring of dams fed P only during pregnancy (P<0·001). No such effect was seen in those from mothers fed R (P=0·596) or W (P=901). We conclude that dietary TFA have differing effects on cardiovascular risk at different stages of the lifecycle.


Asunto(s)
Apolipoproteínas E/metabolismo , Aterosclerosis/etiología , Grasas de la Dieta/efectos adversos , Fenómenos Fisiologicos Nutricionales Maternos , Leche/química , Aceites de Plantas/química , Ácidos Grasos trans/efectos adversos , Animales , Animales Modificados Genéticamente , Apolipoproteínas E/genética , Aterosclerosis/sangre , Aterosclerosis/patología , Colesterol/sangre , Dieta Alta en Grasa , Susceptibilidad a Enfermedades , Femenino , Lactancia , Lipoproteínas/sangre , Masculino , Ratones , Embarazo , Fenómenos Fisiologicos de la Nutrición Prenatal , Factores de Riesgo , Rumiantes
7.
BMC Microbiol ; 16: 78, 2016 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-27141986

RESUMEN

BACKGROUND: Enteric methane from rumen methanogens is responsible for 25.9 % of total methane emissions in the United States. Rumen methanogens also contribute to decreased animal feed efficiency. For methane mitigation strategies to be successful, it is important to establish which factors influence the rumen methanogen community and rumen volatile fatty acids (VFA). In the present study, we used next-generation sequencing to determine if dairy breed and/or days in milk (DIM) (high-fiber periparturient versus high-starch postpartum diets) affect the rumen environment and methanogen community of primiparous Holstein, Jersey, and Holstein-Jersey crossbreeds. RESULTS: When the 16S rRNA gene sequences were processed and assigned to operational taxonomic units (OTU), a core methanogen community was identified, consisting of Methanobrevibacter (Mbr.) smithii, Mbr. thaueri, Mbr. ruminantium, and Mbr. millerae. The 16S rRNA gene sequence reads clustered at 3 DIM, but not by breed. At 3 DIM, the mean % abundance of Mbr. thaueri was lower in Jerseys (26.9 %) and higher in Holsteins (30.7 %) and Holstein-Jersey crossbreeds (30.3 %) (P < 0.001). The molar concentrations of total VFA were higher at 3 DIM than at 93, 183, and 273 DIM, whereas the molar proportions of propionate were increased at 3 and 93 DIM, relative to 183 and 273 DIM. Rumen methanogen densities, distributions of the Mbr. species, and VFA molar proportions did not differ by breed. CONCLUSIONS: The data from the present study suggest that a core methanogen community is present among dairy breeds, through out a lactation. Furthermore, the methanogen communities were more influenced by DIM and the breed by DIM interactions than breed differences.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Methanobacteriaceae/clasificación , Methanobacteriaceae/aislamiento & purificación , Rumen/microbiología , Análisis de Secuencia de ADN/métodos , Alimentación Animal , Animales , Bovinos , Análisis por Conglomerados , ADN Bacteriano/genética , ADN Ribosómico/genética , Ácidos Grasos Volátiles/metabolismo , Femenino , Lactancia , Methanobacteriaceae/genética , Periodo Periparto , Periodo Posparto , ARN Ribosómico 16S/genética , Rumen/metabolismo
8.
Proc Natl Acad Sci U S A ; 109(40): 16294-9, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22988119

RESUMEN

Lifetime breast cancer risk reflects an unresolved combination of early life factors including diet, body mass index, metabolic syndrome, obesity, and age at first menses. In parallel, the onset of allometric growth by the mammary glands around puberty is widely held to be estrogen (E)-dependent. Here we report that several physiological changes associated with metabolic syndrome in response to a diet supplemented with the trans-10, cis-12 isomer of conjugated linoleic acid lead to ovary-independent allometric growth of the mammary ducts. The E-independence of this diet-induced growth was highlighted by the fact that it occurred both in male mice and with pharmacological inhibition of either E receptor function or E biosynthesis. Reversal of the metabolic phenotype with the peroxisome proliferator-activated receptor-γ agonist rosiglitazone abrogated diet-induced mammary growth. A role for hyperinsulinemia and increased insulin-like growth factor-I receptor (IGF-IR) expression during mammary growth induced by the trans-10, cis-12 isomer of conjugated linoleic acid was confirmed by its reversal upon pharmacological inhibition of IGF-IR function. Diet-stimulated ductal growth also increased mammary tumorigenesis in ovariectomized polyomavirus middle T-antigen mice. Our data demonstrate that diet-induced metabolic dysregulation, independently of ovarian function, stimulates allometric growth within the mammary glands via an IGF-IR-dependent mechanism.


Asunto(s)
Alimentación Animal/análisis , Ácidos Linoleicos Conjugados/farmacología , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Animales/crecimiento & desarrollo , Síndrome Metabólico/dietoterapia , Animales , Western Blotting , Corticosterona/sangre , Cartilla de ADN/genética , Ácidos Grasos/análisis , Femenino , Técnicas Histológicas , Insulina/sangre , Factor I del Crecimiento Similar a la Insulina/análisis , Análisis de los Mínimos Cuadrados , Ácidos Linoleicos Conjugados/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Reacción en Cadena de la Polimerasa , Rosiglitazona , Tiazolidinedionas
9.
BMC Complement Med Ther ; 24(1): 210, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831412

RESUMEN

PURPOSE: In light of the mounting prevalence of stress in contemporary society and the growing interest in stress reduction methods, this review investigates the potential of taiji as a viable strategy for alleviating stress. METHODS: MEDLINE, EMBASE, the Cochrane Controlled Trials Register (CENTRAL), PsycINFO, and Web of Science were searched up to April 2023 to identify randomized controlled trials of taiji. Studies in both patients and healthy populations were considered. They had to provide a measure of perceived stress and include a no treatment or placebo control group. Data were extracted by two reviewers. Pooled standardized mean differences (SMD) were calculated for perceived stress, biological stress markers, anxiety, depression, and quality of life (QoL). Meta-regression analyses were performed to identify sources of heterogeneity. RESULTS: Eleven trials with a total of 1323 patients comparing taiji to no intervention met the inclusion criteria. The included studies varied strongly with regard to patient characteristics, taiji intervention, and methodological quality. The overall SMD for perceived stress was significant at -0.41 (95% confidence interval, CI, -0.63 to -0.19; I2 = 63%). Exclusion of studies with less than 100 participants yielded a diminished SMD at -0.26 (95% CI, -0.45 to -0.06). The SMD for perceived stress at follow-up was significant (-0.25, 95% CI -0.46 to -0.05). Secondary outcomes highlighted improvements in anxiety and physical QoL, while depression, mental QoL, and biological stress markers remained unchanged. CONCLUSIONS: Results underscore taiji's potential in mitigating perceived stress in both patients and healthy populations, paralleled by enhancements in depressive symptoms, anxiety levels, and physical QoL.


Asunto(s)
Estrés Psicológico , Taichi Chuan , Humanos , Estrés Psicológico/terapia , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Depresión/terapia , Ansiedad
10.
Nutr Res ; 126: 99-122, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38669850

RESUMEN

Bovine dairy milk is a nutrient-rich matrix, but consumption of full-fat dairy food varieties has been claimed historically to be associated with poorer cardiometabolic health, a notion often attributed to the saturated fat content. However, continued investigation that includes observational studies and randomized controlled trials (RCTs) provide evidence that favorably supports full-fat dairy foods and their bioactive components on cardiometabolic health. This review addresses this controversy by examining the evidence surrounding full-fat dairy foods and their implications for human health. Dairy foods are heterogeneous, not just in their fat content but also in other compositional aspects within and between fermented (e.g., yogurt, cheese) and nonfermented products (e.g., milk) that could differentially influence cardiometabolic health. Drawing from complementary lines of evidence from epidemiological studies and RCTs, this review describes the health effects of dairy foods regarding their fat content, as well as their polar lipids that are concentrated in the milk fat globule fraction. Observational studies have limitedly supported the consumption of full-fat dairy to protect against cardiometabolic disorders. However, this framework has been disputed by RCTs indicating that dairy foods, regardless of their fat content or fermentation, are not detrimental to cardiometabolic health and may instead alleviate certain cardiometabolic risk factors. As dietary recommendations evolve, which currently indicate to avoid full-fat dairy foods, it is essential to consider the totality of evidence, especially from RCTs, while also recognizing that investigation is needed to evaluate the complexity of dairy foods within diverse dietary patterns and their impacts on cardiometabolic health.


Asunto(s)
Enfermedades Cardiovasculares , Productos Lácteos , Grasas de la Dieta , Leche , Humanos , Factores de Riesgo Cardiometabólico , Enfermedades Cardiovasculares/prevención & control , Dieta , Glucolípidos , Glicoproteínas , Gotas Lipídicas , Leche/química , Ensayos Clínicos Controlados Aleatorios como Asunto
11.
Foods ; 12(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37444254

RESUMEN

Avocados (Persea americana) are a unique fruit that can provide health benefits when included in a healthy diet. As health care moves towards precision health and targeted therapies or preventative medicine, it is critical to understand foods and their dietary components. The nutritional composition and plant physiology of the Hass avocado is strikingly different from other fruits. This paper reviews the nutrient and bioactive composition of the edible portion of the Hass avocado (pulp) reported in the literature and from commercial lab analyses of the current market supply of fresh Hass avocados. These results provide comprehensive data on what nutrients and bioactives are in avocado and the quantity of these nutrients. We discuss the reasons for nutrient composition variations and review some potential health benefits of bioactive compounds found in Hass avocados.

12.
J Nutr ; 142(9): 1679-83, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22810990

RESUMEN

Cardiovascular disease (CVD) is the leading cause of death among women worldwide, and risk for developing CVD increases postmenopause. Consumption of trans-fatty acids (tFA) has been positively associated with CVD incidence and mortality. The current study was designed to assess the effects of diets high in industrially produced (IP)-tFA, from partially hydrogenated vegetable oils (PHVO), and ruminant-produced (RP)-tFA, from butter oil (BO), on risk factors for CVD. Thirty-two female Hartley guinea pigs, one-half of which were ovariectomized (OVX) to mimic the postmenopausal condition, were fed hypercholesterolemic diets containing 9% by weight PHVO or BO (n = 8/diet and ovariectomy) for 8 wk. The plasma and hepatic lipids did not differ between IP- and RP-tFA groups or between intact and OVX guinea pigs. The BO diet resulted in higher concentrations of plasma total and small HDL particle subclass concentrations than the PHVO diet regardless of ovariectomy status. The intact BO group had higher concentrations of large HDL particles than the intact PHVO group. HDL mean particle size tended to be larger (P = 0.07) in the PHVO groups compared with the BO groups regardless of ovariectomy status. There was a trend toward an interaction between diet and ovariectomy status for LDL mean particle size, which tended to be larger in OVX guinea pigs fed PHVO (P = 0.07). In summary, consumption of IP- and RP-tFA resulted in differential effects on HDL particle subclass profiles in female guinea pigs. The effect of tFA consumption and hormonal status on HDL particle subclass metabolism and the subsequent impact on CVD in females warrants further investigation.


Asunto(s)
HDL-Colesterol/sangre , Hipercolesterolemia/metabolismo , Ovariectomía , Aceites de Plantas/farmacología , Ácidos Grasos trans/farmacología , Alimentación Animal , Animales , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/metabolismo , HDL-Colesterol/química , LDL-Colesterol/sangre , Femenino , Cobayas , Hipercolesterolemia/epidemiología , Hígado/metabolismo , Tamaño de la Partícula , Aceites de Plantas/metabolismo , Distribución Aleatoria , Factores de Riesgo , Rumiantes , Ácidos Grasos trans/metabolismo , Triglicéridos/sangre
13.
Am J Clin Nutr ; 115(6): 1577-1588, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35134818

RESUMEN

BACKGROUND: Plasma phospholipid pentadecanoic acid (C15:0), heptadecanoic acid (C17:0), and trans-palmitoleic acid (trans-C16:1n-7) are correlates of dairy fat intake. However, their relative concentrations may be influenced by other endogenous factors, such as liver fat content, and their validity as biomarkers of dairy fat intake has yet to be established. OBJECTIVES: We investigated whether liver fat content modifies relations between concentrations of C15:0, C17:0, and trans-C16:1n-7 (alone and in combination with iso-C17:0) and known dairy fat intake in the context of a randomized controlled intervention study. We further examined the proportion of dairy fat intake explained by these fatty acids on their own and when considering liver fat content. METHODS: We used data from a 12-wk intervention trial in which participants (n = 62) consumed diets limited in dairy (0.3 g/d of dairy fat), rich in low-fat dairy (8.7 g/d of dairy fat), or rich in full-fat dairy (28.5 g/d of dairy fat). We used linear regression models to examine relations between relative fatty acid concentrations and grams per day of dairy fat intake, liver fat percentage, and their interaction. RESULTS: Only trans-C16:1n-7 in isolation (ß: 0.0004 ± 0.0002, P = 0.03) and combined with iso-C17:0 (ß: 0.002 ± 0.0005, P < 0.0001) were consistently positively associated with dairy fat intake regardless of liver fat content. Trans-C16:1n-7 combined with iso-C17:0 also explained the greatest proportion of variation (35.4%) in dairy fat intake. C15:0 and C17:0 were not associated with dairy fat intake after adjusting for liver fat and were predicted to be higher in relation to increased dairy fat intake only among individuals with elevated liver fat. CONCLUSIONS: The potential for liver fat to affect relative plasma phospholipid concentrations of C15:0 and C17:0 raises questions about their validity as biomarkers of dairy fat intake. Of the fatty acid measures tested, trans-C16:1n-7 combined with iso-C17:0, especially with adjustment of liver fat, age, and sex, may provide the most robust estimate of dairy fat consumption.


Asunto(s)
Grasas de la Dieta , Fosfolípidos , Biomarcadores , Productos Lácteos , Dieta con Restricción de Grasas , Ácidos Grasos , Humanos
14.
J Nutr ; 141(10): 1819-26, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21880955

RESUMEN

Trans-fatty acid consumption from partially hydrogenated vegetable oil (PHVO) has been positively associated with multiple cardiovascular disease risk factors and events. This study was designed to examine the effects of trans-fatty acid isomer profile of PHVO on plasma lipids and lipoproteins and hepatic expression of key genes involved in cholesterol and fatty acid metabolism. Thirty-three male F(1)B strain Syrian Golden Hamsters were allocated to 1 of 3 hypercholesterolemic diets containing (5% by weight): 1) tristearin [control fat (CON)]; 2) partially hydrogenated high-oleic acid sunflower oil (PH-SUN); or 3) partially hydrogenated high-linoleic acid safflower oil (PH-SAF). PH-SUN contained more trans-4 to trans-10 18:1 compared with PH-SAF, which contained more trans-11 to trans-16 18:1. The addition of both PHVO to the diet increased plasma total cholesterol concentrations relative to CON, but only PH-SUN increased the plasma ratio of non-HDL:HDL cholesterol compared with CON. PH-SUN increased VLDL (total, large, and medium) and IDL particle concentrations while decreasing total, medium, and small HDL particle concentrations relative to CON. Both PHVO diets increased the hepatic cholesterol ester concentration, whereas the hepatic TG concentration was lower in PH-SUN compared with PH-SAF and CON. Levels of hepatic LDL receptor, HMG-CoA reductase, and sterol response element binding protein 1 mRNA were specifically reduced in the PH-SUN group compared to the CON group. Expression of SREBP1c was upregulated in both PHVO groups compared to CON, whereas only the PH-SAF group had higher levels of the lipogenic enzymes acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase-1 compared to CON. These results indicate that differences in the trans-fatty acid profile of PHVO can differentially affect lipid and lipoprotein metabolism.


Asunto(s)
Colesterol/sangre , Manipulación de Alimentos , Lipoproteínas/sangre , Ácidos Oléicos/efectos adversos , Aceites de Plantas/química , Ácidos Grasos trans/efectos adversos , Animales , Enfermedades Cardiovasculares/epidemiología , Colesterol/metabolismo , Cricetinae , Regulación de la Expresión Génica , Hidrogenación , Isomerismo , Metabolismo de los Lípidos , Lipoproteínas/química , Lipoproteínas/metabolismo , Hígado/metabolismo , Masculino , Mesocricetus , Ácidos Oléicos/química , Tamaño de la Partícula , ARN Mensajero/metabolismo , Factores de Riesgo , Aceite de Cártamo/química , Aceite de Girasol , Ácidos Grasos trans/química
15.
Front Nutr ; 8: 715287, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34490329

RESUMEN

Omega-3 (n-3) fatty acids (FA) play an essential role in human physiology and health. As a result, a variety of n-3 FA-fortified functional foods have become commercially available for human consumption. These fortified functional foods are created through various processes; however, nutri-priming, a potentially promising fortification approach, has not been utilized to develop plant-based n-3 fortified foods. We sought to determine whether nutri-priming is a viable option to enrich seeds and sprouts with n-3 FA. Additionally, we assessed whether n-3 FA nutri-priming would inhibit germination of the primed seeds. To address these goals, we nutri-primed brown flax in three priming solutions, control [0% fish oil (FO)], 10% FO and a 20% FO solution, and determined the FA content and profile of seeds and sprouts and germination percentage of primed seeds. n-3 FA nutri-priming with FO altered the FA profile in seeds and sprouts, with increases in the absolute content of 20:5 n-3, 22:6 n-3, 22:5 n3, 18:4 n-3, and 20:4 n-6. However, n-3 FA nutri-priming did not increase the absolute content of 18:2 n-6, 18:3 n-3, total saturated FA, total monounsaturated FA, total polyunsaturated FA, total n-6 FA, or total n-3 FA. Our results also showed that n-3 nutri-priming decreased the germination percentage of primed seeds, with 10 and 20% FO priming solution reducing germination by 4.3 and 6.2%, respectively. Collectively, n-3 nutri-priming modified the n-3 FA profile in flax; however, the process does not increase the total n-3 FA content and inhibits germination of primed seeds. Further research utilizing different seed types, oil types, and oil concentrations needs to be conducted to fully determine if n-3 nutri-priming is a commercially viable approach for n-3 fortification of seeds and sprouts.

16.
Am J Clin Nutr ; 114(3): 882-892, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34258627

RESUMEN

BACKGROUND: Dietary guidelines traditionally recommend low-fat dairy because dairy's high saturated fat content is thought to promote cardiovascular disease (CVD). However, emerging evidence indicates that dairy fat may not negatively impact CVD risk factors when consumed in foods with a complex matrix. OBJECTIVE: The aim was to compare the effects of diets limited in dairy or rich in either low-fat or full-fat dairy on CVD risk factors. METHODS: In this randomized controlled trial, 72 participants with metabolic syndrome completed a 4-wk run-in period, limiting their dairy intake to ≤3 servings/wk of nonfat milk. Participants were then randomly assigned to 1 of 3 diets, either continuing the limited-dairy diet or switching to a diet containing 3.3 servings/d of either low-fat or full-fat milk, yogurt, and cheese for 12 wk. Exploratory outcome measures included changes in the fasting lipid profile and blood pressure. RESULTS: In the per-protocol analysis (n = 66), there was no intervention effect on fasting serum total, LDL, and HDL cholesterol; triglycerides; free fatty acids; or cholesterol content in 38 isolated plasma lipoprotein fractions (P > 0.1 for all variables in repeated-measures ANOVA). There was also no intervention effect on diastolic blood pressure, but a significant intervention effect for systolic blood pressure (P = 0.048), with a trend for a decrease in the low-fat dairy diet (-1.6 ± 8.6 mm Hg) compared with the limited-dairy diet (+2.5 ± 8.2 mm Hg) in post hoc testing. Intent-to-treat results were consistent for all endpoints, with the exception that systolic blood pressure became nonsignificant (P = 0.08). CONCLUSIONS: In men and women with metabolic syndrome, a diet rich in full-fat dairy had no effects on fasting lipid profile or blood pressure compared with diets limited in dairy or rich in low-fat dairy. Therefore, dairy fat, when consumed as part of complex whole foods, does not adversely impact these classic CVD risk factors. This trial was registered at clinicaltrials.gov as NCT02663544.


Asunto(s)
Productos Lácteos/análisis , Grasas de la Dieta/administración & dosificación , Lípidos/sangre , Adiposidad/efectos de los fármacos , Adulto , Anciano , Presión Sanguínea , Enfermedades Cardiovasculares , Productos Lácteos/efectos adversos , Grasas de la Dieta/efectos adversos , Conducta Alimentaria , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo
17.
Am J Clin Nutr ; 113(3): 534-547, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33184632

RESUMEN

BACKGROUND: Dairy foods, particularly yogurt, and plasma biomarkers of dairy fat intake are consistently inversely associated with incident type 2 diabetes. Yet, few trials assessing the impact of dairy on glucose homeostasis include fermented or full-fat dairy foods. OBJECTIVES: We aimed to compare the effects of diets rich in low-fat or full-fat milk, yogurt, and cheese on glucose tolerance and its determinants, with those of a limited dairy diet. METHODS: In this parallel-design randomized controlled trial, 72 participants with metabolic syndrome completed a 4-wk wash-in period, limiting dairy intake to ≤3 servings/wk of nonfat milk. Participants were then randomly assigned to either continue the limited dairy diet, or switch to a diet containing 3.3 servings/d of either low-fat or full-fat dairy for 12 wk. Outcome measures included glucose tolerance (area under the curve glucose during an oral-glucose-tolerance test), insulin sensitivity, pancreatic ß-cell function, systemic inflammation, liver-fat content, and body weight and composition. RESULTS: In the per-protocol analysis (n = 67), we observed no intervention effect on glucose tolerance (P = 0.340). Both the low-fat and full-fat dairy diets decreased the Matsuda insulin sensitivity index (ISI) (means ± SDs -0.47 ± 1.07 and -0.25 ± 0.91, respectively) and as compared with the limited dairy group (0.00 ± 0.92) (P = 0.012 overall). Body weight also changed differentially (P = 0.006 overall), increasing on full-fat dairy (+1.0 kg; -0.2, 1.8 kg) compared with the limited dairy diet (-0.4 kg; -2.5, 0.7 kg), whereas the low-fat dairy diet (+0.3 kg; -1.1, 1.9 kg) was not significantly different from the other interventions. Intervention effects on the Matsuda ISI remained after adjusting for changes in adiposity. No intervention effects were detected for liver fat content or systemic inflammation. Findings in intent-to-treat analyses (n = 72) were consistent. CONCLUSIONS: Contrary to our hypothesis, neither dairy diet improved glucose tolerance in individuals with metabolic syndrome. Both dairy diets decreased insulin sensitivity through mechanisms largely unrelated to changes in key determinants of insulin sensitivity.This trial was registered at clinicaltrials.gov as NCT02663544.


Asunto(s)
Productos Lácteos , Grasas de la Dieta/administración & dosificación , Intolerancia a la Glucosa , Leche/química , Anciano , Animales , Composición Corporal , Peso Corporal , Grasas de la Dieta/análisis , Ingestión de Energía , Femenino , Humanos , Masculino , Persona de Mediana Edad
18.
J Nutr ; 140(12): 2173-9, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20980644

RESUMEN

Although trans-fatty acid (tFA) intake has been positively associated with coronary heart disease (CHD), the relative effect of consuming industrially produced (IP)- compared with ruminant-produced (RP)-tFA on CHD risk factors is unclear. This study was designed to examine the effects of feeding partially hydrogenated vegetable oil (PHVO), IP-tFA source, and butter oil (BO), RP-tFA source, on the development of atherosclerosis and risk factors associated with CHD. Forty-eight male Hartley guinea pigs were fed a hypercholesterolemic diet containing (9% by weight) PHVO, BO, coconut oil (CO; positive control), or soybean oil (SO; negative control) for 8 or 12 wk (n = 6/group). Morphological analysis revealed that none of the groups developed atherosclerosis. Plasma and hepatic lipids did not differ between the tFA groups, but total and small HDL particles were significantly higher in the BO group than in the PHVO group and mean HDL particle size was significantly smaller in the BO group than in the PHVO group. Compared with the other treatment groups, the SO treatment resulted in significantly lower total cholesterol (TC) and LDL cholesterol in plasma, whereas hepatic TC was significantly higher in the SO group than in the other treatment groups. Plasma and hepatic cholesterol concentrations did not differ between the tFA and CO treatments. These results demonstrate that when fed at a high dose, IP- and RP-tFA had the same effect on established CHD risk factors in male Hartley guinea pigs. The effects of RP-tFA on HDL particle sizes and concentrations warrant further investigation.


Asunto(s)
Ácidos Grasos/fisiología , Lipoproteínas HDL/sangre , Rumiantes , Animales , Cobayas , Masculino , Tamaño de la Partícula , Factores de Riesgo
19.
J Food Sci ; 85(10): 3450-3458, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32901954

RESUMEN

A plain symbiotic almond yogurt-like product was formulated and developed using a plant-based starter YF-L02 (Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus supplemented with Lactobacillus acidophilus, Lactobacillus paracasei, and Bifidobacterium animalis) and inulin; 0.6% polymerized whey protein (PWP), 0.3% pectin, and 0.05% xanthan gum were optimized for the formula of the almond yogurt alternative. Two groups with/without calcium citrate and vitamin D2 were prepared and analyzed for chemical composition, changes in pH, viscosity, and probiotic survivability during storage at 4 °C for 10 weeks. The results showed that (1) over 10 weeks storage, the differences in the pH, viscosity, and probiotic survivability between the control and the fortified samples were not significant (P > 0.05); (2) the pH of both yogurt samples decreased 0.2 units while their viscosity slightly increased during storage; (3) the populations of L. paracasei and B. animalis remained above 106 cfu/g during the storage, whereas the population of L. acidophilus decreased dramatically during the first 4 weeks, especially the control group; (4) the microstructure was examined by scanning electron microscopy, revealing a compact and denser gel structure formed by 0.6% PWP with the presence of 0.3% pectin and 0.05% xanthan gum. In conclusion, PWP might be a proper gelation agent for the formulation of symbiotic almond yogurt alternative. PRACTICAL APPLICATION: In this study, polymerized whey protein was used as a gelation agent to formulate symbiotic almond yogurt alternatives with comparable physical texture and probiotic survivability to dairy yogurt during storage. This technology may be used for the development of plant-based fermented foods.


Asunto(s)
Lactobacillus acidophilus/crecimiento & desarrollo , Lactobacillus delbrueckii/crecimiento & desarrollo , Probióticos/química , Prunus dulcis/química , Streptococcus thermophilus/crecimiento & desarrollo , Proteína de Suero de Leche/química , Yogur/análisis , Fermentación , Geles/química , Geles/metabolismo , Inulina/química , Inulina/metabolismo , Lactobacillus acidophilus/metabolismo , Lactobacillus delbrueckii/metabolismo , Viabilidad Microbiana , Pectinas/química , Pectinas/metabolismo , Polimerizacion , Prunus dulcis/metabolismo , Prunus dulcis/microbiología , Streptococcus thermophilus/metabolismo , Viscosidad , Proteína de Suero de Leche/metabolismo , Yogur/microbiología
20.
PLoS One ; 15(9): e0238893, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32956361

RESUMEN

Utilization of murine models remains a valuable tool in biomedical research, yet, disease phenotype of mice across studies can vary considerably. With advances in next generation sequencing, it is increasingly recognized that inconsistencies in host phenotype can be attributed, at least in part, to differences in gut bacterial composition. Research with inbred murine strains demonstrates that housing conditions play a significant role in variations of gut bacterial composition, however, few studies have assessed whether observed variation influences host phenotype in response to an intervention. Our study initially sought to examine the effects of a long-term (9-months) dietary intervention (i.e., diets with distinct fatty acid compositions) on the metabolic health, in particular glucose homeostasis, of genetically-outbred male and female CD-1 mice. Yet, mice were shipped from two different husbandry facilities of the same commercial vendor (Cohort A and B, respectively), and we observed throughout the study that diet, sex, and aging differentially influenced the metabolic phenotype of mice depending on their husbandry facility of origin. Examination of the colonic bacteria of mice revealed distinct bacterial compositions, including 23 differentially abundant genera and an enhanced alpha diversity in mice of Cohort B compared to Cohort A. We also observed that a distinct metabolic phenotype was linked with these differentially abundant bacteria and indices of alpha diversity. Our findings support that metabolic phenotypic variation of mice of the same strain but shipped from different husbandry facilities may be influenced by their colonic bacterial community structure. Our work is an important precautionary note for future research of metabolic diseases via mouse models, particularly those that seek to examine factors such diet, sex, and aging.


Asunto(s)
Bacterias/clasificación , Dieta/efectos adversos , Heces/microbiología , Glucosa/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Ratones Endogámicos/genética , Crianza de Animales Domésticos , Animales , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Ratones , Modelos Animales , Fenotipo , Filogenia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA