Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 151(2): 253-66, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23063120

RESUMEN

Pathogenic simian immunodeficiency virus (SIV) infection is associated with enteropathy, which likely contributes to AIDS progression. To identify candidate etiologies for AIDS enteropathy, we used next-generation sequencing to define the enteric virome during SIV infection in nonhuman primates. Pathogenic, but not nonpathogenic, SIV infection was associated with significant expansion of the enteric virome. We identified at least 32 previously undescribed enteric viruses during pathogenic SIV infection and confirmed their presence by using viral culture and PCR testing. We detected unsuspected mucosal adenovirus infection associated with enteritis as well as parvovirus viremia in animals with advanced AIDS, indicating the pathogenic potential of SIV-associated expansion of the enteric virome. No association between pathogenic SIV infection and the family-level taxonomy of enteric bacteria was detected. Thus, enteric viral infections may contribute to AIDS enteropathy and disease progression. These findings underline the importance of metagenomic analysis of the virome for understanding AIDS pathogenesis.


Asunto(s)
Caliciviridae/aislamiento & purificación , Intestinos/virología , Parvoviridae/aislamiento & purificación , Picornaviridae/aislamiento & purificación , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/fisiología , Animales , Caliciviridae/clasificación , Caliciviridae/genética , Chlorocebus aethiops , Heces/microbiología , Heces/virología , Intestinos/microbiología , Datos de Secuencia Molecular , Parvoviridae/clasificación , Parvoviridae/genética , Filogenia , Picornaviridae/clasificación , Picornaviridae/genética , Reacción en Cadena de la Polimerasa , Síndrome de Inmunodeficiencia Adquirida del Simio/microbiología , Virus de la Inmunodeficiencia de los Simios/patogenicidad
2.
PLoS Pathog ; 18(4): e1010416, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35377924

RESUMEN

We investigated the impact of monocytes, NK cells, and CD8+ T-cells in primary HTLV-1 infection by depleting cell subsets and exposing macaques to either HTLV-1 wild type (HTLV-1WT) or to the HTLV-1p12KO mutant unable to infect replete animals due to a single point mutation in orf-I that inhibits its expression. The orf-I encoded p8/p12 proteins counteract cytotoxic NK and CD8+ T-cells and favor viral DNA persistence in monocytes. Double NK and CD8+ T-cells or CD8 depletion alone accelerated seroconversion in all animals exposed to HTLV-1WT. In contrast, HTLV-1p12KO infectivity was fully restored only when NK cells were also depleted, demonstrating a critical role of NK cells in primary infection. Monocyte/macrophage depletion resulted in accelerated seroconversion in all animals exposed to HTLV-1WT, but antibody titers to the virus were low and not sustained. Seroconversion did not occur in most animals exposed to HTLV-1p12KO. In vitro experiments in human primary monocytes or THP-1 cells comparing HTLV-1WT and HTLV-1p12KO demonstrated that orf-I expression is associated with inhibition of inflammasome activation in primary cells, with increased CD47 "don't-eat-me" signal surface expression in virus infected cells and decreased monocyte engulfment of infected cells. Collectively, our data demonstrate a critical role for innate NK cells in primary infection and suggest a dual role of monocytes in primary infection. On one hand, orf-I expression increases the chances of viral transmission by sparing infected cells from efferocytosis, and on the other may protect the engulfed infected cells by modulating inflammasome activation. These data also suggest that, once infection is established, the stoichiometry of orf-I expression may contribute to the chronic inflammation observed in HTLV-1 infection by modulating monocyte efferocytosis.


Asunto(s)
Infecciones por HTLV-I , Virus Linfotrópico T Tipo 1 Humano , Animales , Inflamasomas/metabolismo , Células Asesinas Naturales , Monocitos
3.
Nature ; 537(7620): 403-7, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27629645

RESUMEN

Only a handful of bird species are known to use foraging tools in the wild. Amongst them, the New Caledonian crow (Corvus moneduloides) stands out with its sophisticated tool-making skills. Despite considerable speculation, the evolutionary origins of this species' remarkable tool behaviour remain largely unknown, not least because no naturally tool-using congeners have yet been identified that would enable informative comparisons. Here we show that another tropical corvid, the 'Alala (C. hawaiiensis; Hawaiian crow), is a highly dexterous tool user. Although the 'Alala became extinct in the wild in the early 2000s, and currently survives only in captivity, at least two lines of evidence suggest that tool use is part of the species' natural behavioural repertoire: juveniles develop functional tool use without training, or social input from adults; and proficient tool use is a species-wide capacity. 'Alala and New Caledonian crows evolved in similar environments on remote tropical islands, yet are only distantly related, suggesting that their technical abilities arose convergently. This supports the idea that avian foraging tool use is facilitated by ecological conditions typical of islands, such as reduced competition for embedded prey and low predation risk. Our discovery creates exciting opportunities for comparative research on multiple tool-using and non-tool-using corvid species. Such work will in turn pave the way for replicated cross-taxonomic comparisons with the primate lineage, enabling valuable insights into the evolutionary origins of tool-using behaviour.


Asunto(s)
Cuervos/fisiología , Comportamiento del Uso de la Herramienta , Envejecimiento , Animales , Animales de Zoológico/fisiología , Evolución Biológica , Cognición , Cuervos/clasificación , Femenino , Hawaii , Masculino , Filogenia , Especificidad de la Especie
4.
J Virol ; 93(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31434738

RESUMEN

Adoptive cell transfer (ACT) is a powerful experimental approach to directly study T-cell-mediated immunity in vivo In the rhesus macaque AIDS virus model, infusing simian immunodeficiency virus (SIV)-infected animals with CD8 T cells engineered to express anti-SIV T-cell receptor specificities enables direct experimentation to better understand antiviral T-cell immunity in vivo Limiting factors in ACT experiments include suboptimal trafficking to, and poor persistence in, the secondary lymphoid tissues targeted by AIDS viruses. Previously, we redirected CD8 T cells to B-cell follicles by ectopic expression of the CXCR5 homing protein. Here, we modify peripheral blood mononuclear cell (PBMC)-derived CD8 T cells to express the CCR9 chemokine receptor, which induces preferential homing of the engineered cells to the small intestine, a site of intense early AIDS virus replication and pathology in rhesus macaques. Additionally, we increase in vivo persistence and overall systemic distribution of infused CD8 T cells, especially in secondary lymphoid tissues, by minimizing ex vivo culture/manipulation, thereby avoiding the loss of CD28+/CD95+ central memory T cells by differentiation in culture. These proof-of-principle results establish the feasibility of preferentially localizing PBMC-derived CD8 T cells to the small intestine and enables the direct experimental ACT-based assessment of the potential role of the quality and timing of effective antiviral CD8 T-cell responses to inhibit viral infection and subsequent replication in small intestine CD4 T cells. More broadly, these results support the engineered expression of homing proteins to direct CD8 T cells to target tissues as a means for both experimental and potential therapeutic advances in T-cell immunotherapies, including cancer.IMPORTANCEAdoptive cell transfer (ACT) of T cells engineered with antigen-specific effector properties can deliver targeted immune responses against malignancies and infectious diseases. Current T-cell-based therapeutic ACT relies on circulatory distribution to deliver engineered T cells to their targets, an approach which has proven effective for some leukemias but provided only limited efficacy against solid tumors. Here, engineered expression of the CCR9 homing receptor redirected CD8 T cells to the small intestine in rhesus macaque ACT experiments. Targeted homing of engineered T-cell immunotherapies holds promise to increase the effectiveness of adoptively transferred cells in both experimental and clinical settings.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Quimiotaxis de Leucocito/inmunología , Intestino Delgado/inmunología , Receptores CCR/metabolismo , Traslado Adoptivo , Animales , Antígenos CD28/metabolismo , Linfocitos T CD8-positivos/metabolismo , Quimiocinas CC/metabolismo , Memoria Inmunológica , Intestino Delgado/virología , Leucocitos Mononucleares/inmunología , Ganglios Linfáticos/inmunología , Macaca mulatta , Transducción de Señal , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/inmunología
6.
Heart Fail Rev ; 24(5): 617-623, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30923991

RESUMEN

Cardiac cachexia is a syndrome of progressive skeletal muscle and fat loss affecting a significant number of congestive heart failure patients. With the potential detrimental effects of cardiac muscle wasting, greater attention is needed to understanding the prevention and treatment of the condition. Potential therapeutic approaches are aimed at the various mechanisms for the pathogenesis of cardiac cachexia including neurohormonal abnormalities, immune activation and inflammation, metabolic hormonal imbalance, and gastrointestinal abnormalities. While there are no current guideline-recommended treatments for the prevention of cardiac cachexia, targeting an imbalance of the renin-angiotensin-aldosterone system with beta-blockers, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers appears to be the most well-studied therapeutic approaches. Treatment of inflammation with monoclonal antibodies, hormonal imbalance with testosterone, and nutritional deficiencies with appetite stimulants has also been suggested. Proposed therapies may prove beneficial in heart failure patients; however, further studies specifically focusing on the cardiac component of cachexia are needed before definitive therapy options can be established.


Asunto(s)
Caquexia/tratamiento farmacológico , Caquexia/prevención & control , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/prevención & control , Antagonistas Adrenérgicos beta/uso terapéutico , Antagonistas de Receptores de Angiotensina/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Estimulantes del Apetito/uso terapéutico , Diuréticos/uso terapéutico , Humanos , Sistema Renina-Angiotensina/efectos de los fármacos , Síndrome , Testosterona/uso terapéutico
7.
Adv Exp Med Biol ; 1186: 99-119, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31654387

RESUMEN

There is an increasing effort toward generating replacement cells for neuronal application due to the nonregenerative nature of these tissues. While much progress has been made toward developing methodologies to generate these cells, there have been limited improvements in functional restoration. Some of these are linked to the degenerative and often nonreceptive microenvironment that the new cells need to integrate into. In this chapter, we will focus on the status and role of the immune microenvironment of the retina during homeostasis and disease states. We will review changes in both innate and adaptive immunity as well as the role of immune rejection in stem cell replacement therapies. The chapter will end with a discussion of immune-modulatory strategies that have helped to ameliorate these effects and could potentially improve functional outcome for cell replacement therapies for the eye.


Asunto(s)
Retina , Trasplante de Células Madre , Inmunidad Adaptativa , Microambiente Celular/inmunología , Humanos , Inmunidad Innata , Inmunomodulación , Neuronas/fisiología , Retina/inmunología , Degeneración Retiniana/inmunología , Degeneración Retiniana/patología , Degeneración Retiniana/terapia
8.
J Virol ; 91(11)2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28298605

RESUMEN

Follicular helper CD4 T cells, TFH, residing in B-cell follicles within secondary lymphoid tissues, are readily infected by AIDS viruses and are a major source of persistent virus despite relative control of viral replication. This persistence is due at least in part to a relative exclusion of effective antiviral CD8 T cells from B-cell follicles. To determine whether CD8 T cells could be engineered to enter B-cell follicles, we genetically modified unselected CD8 T cells to express CXC chemokine receptor 5 (CXCR5), the chemokine receptor implicated in cellular entry into B-cell follicles. Engineered CD8 T cells expressing human CXCR5 (CD8hCXCR5) exhibited ligand-specific signaling and chemotaxis in vitro Six infected rhesus macaques were infused with differentially fluorescent dye-labeled autologous CD8hCXCR5 and untransduced CD8 T cells and necropsied 48 h later. Flow cytometry of both spleen and lymph node samples revealed higher frequencies of CD8hCXCR5 than untransduced cells, consistent with preferential trafficking to B-cell follicle-containing tissues. Confocal fluorescence microscopy of thin-sectioned lymphoid tissues demonstrated strong preferential localization of CD8hCXCR5 T cells within B-cell follicles with only rare cells in extrafollicular locations. CD8hCXCR5 T cells were present throughout the follicles with some observed near infected TFH In contrast, untransduced CD8 T cells were found in the extrafollicular T-cell zone. Our ability to direct localization of unselected CD8 T cells into B-cell follicles using CXCR5 expression provides a strategy to place highly effective virus-specific CD8 T cells into these AIDS virus sanctuaries and potentially suppress residual viral replication.IMPORTANCE AIDS virus persistence in individuals under effective drug therapy or those who spontaneously control viremia remains an obstacle to definitive treatment. Infected follicular helper CD4 T cells, TFH, present inside B-cell follicles represent a major source of this residual virus. While effective CD8 T-cell responses can control viral replication in conjunction with drug therapy or in rare cases spontaneously, most antiviral CD8 T cells do not enter B-cell follicles, and those that do fail to robustly control viral replication in the TFH population. Thus, these sites are a sanctuary and a reservoir for replicating AIDS viruses. Here, we demonstrate that engineering unselected CD8 T cells to express CXCR5, a chemokine receptor on TFH associated with B-cell follicle localization, redirects them into B-cell follicles. These proof of principle results open a pathway for directing engineered antiviral T cells into these viral sanctuaries to help eliminate this source of persistent virus.


Asunto(s)
Linfocitos B/fisiología , Linfocitos T CD8-positivos/metabolismo , Centro Germinal/inmunología , Infecciones por VIH/inmunología , Receptores CXCR5/genética , Receptores CXCR5/metabolismo , Animales , Linfocitos B/virología , Linfocitos T CD8-positivos/virología , Ingeniería Celular , Quimiotaxis , Centro Germinal/citología , Centro Germinal/virología , VIH-1/fisiología , Humanos , Macaca mulatta , Receptores CXCR5/inmunología , Receptores Mensajeros de Linfocitos/inmunología , Linfocitos T Colaboradores-Inductores/fisiología , Viremia , Replicación Viral/inmunología
9.
J Virol ; 90(20): 9153-62, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27489267

RESUMEN

UNLABELLED: Despite its importance in shaping adaptive immune responses, viral clearance, and immune-based inflammation, tissue-specific innate immunity remains poorly characterized for hepatitis C virus (HCV) infection due to the lack of access to acutely infected tissues. In this study, we evaluated the impact of natural killer (NK) cells and myeloid (mDCs) and plasmacytoid (pDCs) dendritic cells on control of virus replication and virus-induced pathology caused by another, more rapidly resolving hepacivirus, GB virus B (GBV-B), in infections of common marmosets. High plasma and liver viral loads and robust hepatitis characterized acute GBV-B infection, and while viremia was generally cleared by 2 to 3 months postinfection, hepatitis and liver fibrosis persisted after clearance. Coinciding with peak viral loads and liver pathology, the levels of NK cells, mDCs, and pDCs in the liver increased up to 3-fold. Although no obvious numerical changes in peripheral innate cells occurred, circulating NK cells exhibited increased perforin and Ki67 expression levels and increased surface expression of CXCR3. These data suggested that increased NK cell arming and proliferation as well as tissue trafficking may be associated with influx into the liver during acute infection. Indeed, NK cell frequencies in the liver positively correlated with plasma (R = 0.698; P = 0.015) and liver (R = 0.567; P = 0.057) viral loads. Finally, soluble factors associated with NK cells and DCs, including gamma interferon (IFN-γ) and RANTES, were increased in acute infection and also were associated with viral loads and hepatitis. Collectively, the findings showed that mobilization of local and circulating innate immune responses was linked to acute virus-induced hepatitis, and potentially to resolution of GBV-B infection, and our results may provide insight into similar mechanisms in HCV infection. IMPORTANCE: Hepatitis C virus (HCV) infection has created a global health crisis, and despite new effective antivirals, it is still a leading cause of liver disease and death worldwide. Recent evidence suggests that innate immunity may be a potential therapeutic target for HCV, but it may also be a correlate of increased disease. Due to a lack of access to human tissues with acute HCV infection, in this study we evaluated the role of innate immunity in resolving infection with a hepacivirus, GBV-B, in common marmosets. Collectively, our data suggest that NK cell and DC mobilization in acute hepacivirus infection can dampen virus replication but also regulate acute and chronic liver damage. How these two opposing effects on the host may be modulated in future therapeutic and vaccine approaches warrants further study.


Asunto(s)
Células Dendríticas/inmunología , Virus GB-B/inmunología , Hepatitis Viral Animal/inmunología , Hepatitis Viral Animal/patología , Inmunidad Innata , Células Asesinas Naturales/inmunología , Animales , Callithrix , Citocinas/metabolismo , Virus GB-B/patogenicidad , Factores Inmunológicos/metabolismo , Hígado/patología , Hígado/virología , Carga Viral
10.
Chemistry ; 23(54): 13342-13350, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28644514

RESUMEN

We report a new class of functionalized polylutidine polymers that are prepared by chemical vapor deposition polymerization of substituted [2](1,4)benzeno[2](2,5)pyridinophanes. To prepare sufficient amounts of monomer for CVD polymerization, a new synthesis route for ethynylpyridinophane has been developed in three steps with an overall yield of 59 %. Subsequent CVD polymerization yielded well-defined films of poly(2,5-lutidinylene-co-p-xylylene) and poly(4-ethynyl-2,5-lutidinylene-co-p-xylylene). All polymers were characterized by infrared reflection-absorption spectroscopy, ellipsometry, contact angle studies, and X-ray photoelectron spectroscopy. Moreover, ζ-potential measurements revealed that polylutidine films have higher isoelectric points than the corresponding poly-xylylene surfaces owing to the nitrogen atoms in the polymer backbone. The availability of reactive alkyne groups on the surface of poly(4-ethynyl-2,5-lutidinylene-co-p-xylylene) coatings was confirmed by spatially controlled surface modification by means of Huisgen 1,3-dipolar cycloaddition. Compared to the more hydrophobic poly-p-xylylyenes, the presence of the heteroatom in the polymer backbone of polylutidine polymers resulted in surfaces that supported an increased adhesion of primary human umbilical vein endothelial cells (HUVECs). Vapor-based polylutidine coatings are a new class of polymers that feature increased hydrophilicity and increased cell adhesion without limiting the flexibility in selecting appropriate functional side groups.

11.
Hum Mol Genet ; 23(3): 668-81, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24108104

RESUMEN

Amyotrophic lateral sclerosis (ALS) causes motor neuron degeneration and paralysis. No treatment can significantly slow or arrest the disease progression. Mutations in the SOD1 gene cause a subset of familial ALS by a gain of toxicity. In principle, these cases could be treated with RNAi that destroys the mutant mRNA, thereby abolishing the toxic protein. However, no system is available to efficiently deliver the RNAi therapy. Recombinant adenoassociated virus (rAAV) is a promising vehicle due to its long-lasting gene expression and low toxicity. However, ALS afflicts broad areas of the central nervous system (CNS). A lack of practical means to spread rAAV broadly has hindered its application in treatment of ALS. To overcome this barrier, we injected several rAAV serotypes into the cerebrospinal fluid. We found that some rAAV serotypes such as rAAVrh10 and rAAV9 transduced cells throughout the length of the spinal cord following a single intrathecal injection and in the broad forebrain following a single injection into the third ventricle. Furthermore, a single intrathecal injection of rAAVrh10 robustly transduced motor neurons throughout the spinal cord in a non-human primate. These results suggested a therapeutic potential of this vector for ALS. To test this, we injected a rAAVrh10 vector that expressed an artificial miRNA targeting SOD1 into the SOD1G93A mice. This treatment knocked down the mutant SOD1 expression and slowed the disease progression. Our results demonstrate the potential of rAAVs for delivering gene therapy to treat ALS and other diseases that afflict broad areas of the CNS.


Asunto(s)
Esclerosis Amiotrófica Lateral/terapia , Dependovirus/genética , Vectores Genéticos/administración & dosificación , Médula Espinal , Transducción Genética/métodos , Esclerosis Amiotrófica Lateral/genética , Animales , Callithrix , Sistema Nervioso Central/fisiología , Líquido Cefalorraquídeo/fisiología , Femenino , Terapia Genética/métodos , Vectores Genéticos/farmacocinética , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Inyecciones Espinales , Ratones , Ratones Transgénicos , Interferencia de ARN , Médula Espinal/patología , Superóxido Dismutasa/genética , Superóxido Dismutasa-1 , Transgenes
12.
Mol Ther ; 22(7): 1299-1309, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24781136

RESUMEN

Some recombinant adeno-associated viruses (rAAVs) can cross the neonatal blood-brain barrier (BBB) and efficiently transduce cells of the central nervous system (CNS). However, in the adult CNS, transduction levels by systemically delivered rAAVs are significantly reduced, limiting their potential for CNS gene therapy. Here, we characterized 12 different rAAVEGFPs in the adult mouse CNS following intravenous delivery. We show that the capability of crossing the adult BBB and achieving widespread CNS transduction is a common character of AAV serotypes tested. Of note, rAAVrh.8 is the leading vector for robust global transduction of glial and neuronal cell types in regions of clinical importance such as cortex, caudate-putamen, hippocampus, corpus callosum, and substantia nigra. It also displays reduced peripheral tissue tropism compared to other leading vectors. Additionally, we evaluated rAAVrh.10 with and without microRNA (miRNA)-regulated expressional detargeting from peripheral tissues for systemic gene delivery to the CNS in marmosets. Our results indicate that rAAVrh.8, along with rh.10 and 9, hold the best promise for developing novel therapeutic strategies to treat neurological diseases in the adult patient population. Additionally, systemically delivered rAAVrh.10 can transduce the CNS efficiently, and its transgene expression can be limited in the periphery by endogenous miRNAs in adult marmosets.


Asunto(s)
Sistema Nervioso Central/metabolismo , Dependovirus/genética , Animales , Encéfalo/metabolismo , Callithrix , Masculino , Ratones , MicroARNs/genética , Primates
13.
Nat Mater ; 12(4): 367-76, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23353628

RESUMEN

DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers. Films transferred into the skin following brief microneedle application promoted local transfection and controlled the persistence of DNA and adjuvants in the skin from days to weeks, with kinetics determined by the film composition. These 'multilayer tattoo' DNA vaccines induced immune responses against a model HIV antigen comparable to electroporation in mice, enhanced memory T-cell generation, and elicited 140-fold higher gene expression in non-human primate skin than intradermal DNA injection, indicating the potential of this strategy for enhancing DNA vaccination.


Asunto(s)
Adyuvantes Inmunológicos/química , Polímeros/química , Vacunas de ADN/química , Animales , Electroporación/métodos , Humanos , Inyecciones Intradérmicas , Ratones , Piel/inmunología , Vacunación/métodos , Vacunas de ADN/inmunología
14.
Comp Med ; 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36941053

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) remains a significant problem for human and animal health and can negatively affect the health status of macaques and other nonhuman primates (NHP) in research colonies. However, few publications provide guidance on the prevalence, genotype, or risk factors for macaques with MRSA and even fewer on how to effectively respond to MRSA once identified in a population. After having a clinical case of MRSA in a rhesus macaque, we sought to determine the MRSA carrier prevalence, risk factors, and genotypes of MRSA in a population of research NHPs. Over a 6-wk period in 2015, we collected nasal swabs from 298 NHPs. MRSA was isolated from 28% (n = 83). We then reviewed each macaque's medical record for a variety of variables including animal housing room, sex, age, number of antibiotic courses, number of surgical interventions, and SIV status. Analysis of these data suggests that MRSA carriage is associated with the room location, age of the animal, SIV status, and the number of antibiotic courses. We used multilocus sequence typing and spa typing on a subset of MRSA and MSSA isolates to determine whether the MRSA present in NHPs was comparable with common human strains. Two MRSA sequence types were predominant: ST188 and a novel MRSA genotype, neither of which is a common human isolate in the United States. We subsequently implemented antimicrobial stewardship practices (significantly reducing antimicrobial use) and then resampled the colony in 2018 and found that MRSA carriage had fallen to 9% (26/285). These data suggest that, as in humans, macaques may have a high carrier status of MRSA despite low clinically apparent disease. Implementing strategic antimicrobial stewardship practices resulted in a marked reduction in MRSA carriage in the NHP colony, highlighting the importance of limiting antimicrobial use when possible.

15.
EBioMedicine ; 95: 104764, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37625266

RESUMEN

BACKGROUND: Long-acting subcutaneous lenacapavir (LEN), a first-in-class HIV capsid inhibitor approved by the US FDA for the treatment of multidrug-resistant HIV-1 with twice yearly dosing, is under investigation for HIV-1 pre-exposure prophylaxis (PrEP). We previously derived a simian-tropic HIV-1 clone (stHIV-A19) that encodes an HIV-1 capsid and replicates to high titres in pigtail macaques (PTM), resulting in a nonhuman primate model well-suited for evaluating LEN PrEP in vivo. METHODS: Lenacapavir potency against stHIV-A19 in PTM peripheral blood mononuclear cells in vitro was determined and subcutaneous LEN pharmacokinetics were evaluated in naïve PTMs in vivo. To evaluate the protective efficacy of LEN PrEP, naïve PTMs received either a single subcutaneous injection of LEN (25 mg/kg, N = 3) or vehicle (N = 4) 30 days before a high-dose intravenous challenge with stHIV-A19, or 7 daily subcutaneous injections of a 3-drug control PrEP regimen starting 3 days before stHIV-A19 challenge (N = 3). FINDINGS: In vitro, LEN showed potent antiviral activity against stHIV-A19, comparable to its potency against HIV-1. In vivo, subcutaneous LEN displayed sustained plasma drug exposures in PTMs. Following stHIV-A19 challenge, while all vehicle control animals became productively infected, all LEN and 3-drug control PrEP animals were protected from infection. INTERPRETATION: These findings highlight the utility of the stHIV-A19/PTM model and support the clinical development of long-acting LEN for PrEP in humans. FUNDING: Gilead Sciences as part of a Cooperative Research and Development Agreement between Gilead Sciences and Frederick National Lab; federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. 75N91019D00024/HHSN261201500003I; NIH grant R01AI078788.


Asunto(s)
Fármacos Anti-VIH , Seropositividad para VIH , VIH-1 , Estados Unidos , Animales , Humanos , Macaca , Leucocitos Mononucleares , Administración Intravenosa , Proteínas de la Cápside
16.
Vaccines (Basel) ; 11(11)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38005994

RESUMEN

At the heart of the DNA/ALVAC/gp120/alum vaccine's efficacy in the absence of neutralizing antibodies is a delicate balance of pro- and anti-inflammatory immune responses that effectively decreases the risk of SIVmac251 acquisition in macaques. Vaccine efficacy is linked to antibodies recognizing the V2 helical conformation, DC-10 tolerogenic dendritic cells eliciting the clearance of apoptotic cells via efferocytosis, and CCR5 downregulation on vaccine-induced gut homing CD4+ cells. RAS activation is also linked to vaccine efficacy, which prompted the testing of IGF-1, a potent inducer of RAS activation with vaccination. We found that IGF-1 changed the hierarchy of V1/V2 epitope recognition and decreased both ADCC specific for helical V2 and efferocytosis. Remarkably, IGF-1 also reduced the expression of CCR5 on vaccine-induced CD4+ gut-homing T-cells, compensating for its negative effect on ADCC and efferocytosis and resulting in equivalent vaccine efficacy (71% with IGF-1 and 69% without).

17.
Nat Commun ; 14(1): 575, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732510

RESUMEN

The development of an effective vaccine to protect against HIV acquisition will be greatly bolstered by in-depth understanding of the innate and adaptive responses to vaccination. We report here that the efficacy of DNA/ALVAC/gp120/alum vaccines, based on V2-specific antibodies mediating apoptosis of infected cells (V2-ADCC), is complemented by efferocytosis, a cyclic AMP (cAMP)-dependent antiphlogistic engulfment of apoptotic cells by CD14+ monocytes. Central to vaccine efficacy is the engagement of the CCL2/CCR2 axis and tolerogenic dendritic cells producing IL-10 (DC-10). Epigenetic reprogramming in CD14+ cells of the cyclic AMP/CREB pathway and increased systemic levels of miRNA-139-5p, a negative regulator of expression of the cAMP-specific phosphodiesterase PDE4D, correlated with vaccine efficacy. These data posit that efferocytosis, through the prompt and effective removal of apoptotic infected cells, contributes to vaccine efficacy by decreasing inflammation and maintaining tissue homeostasis.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , Femenino , Animales , Eficacia de las Vacunas , Macaca mulatta , Vacunación , Citotoxicidad Celular Dependiente de Anticuerpos , Anticuerpos Anti-VIH , Infecciones por VIH/prevención & control , Proteína gp120 de Envoltorio del VIH/genética
18.
J Virol ; 85(15): 7658-71, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21593160

RESUMEN

Nipah virus (NiV) and Hendra virus (HeV) are emerging zoonotic viruses and the causative agents of severe respiratory disease and encephalitis in humans. Little is known about the mechanisms that govern the development of respiratory and neurological disease. Using a hamster model of lethal NiV and HeV infection, we describe the role of the route and dose of infection on the clinical outcome and determine virus tropism and host responses following infection. Infection of hamster with a high dose of NiV or HeV resulted in acute respiratory distress. NiV initially replicated in the upper respiratory tract epithelium, whereas HeV initiated infection primarily in the interstitium. In contrast, infection with a low dose of NiV or HeV resulted in the development of neurological signs and more systemic spread of the virus through involvement of the endothelium. The development of neurological signs coincided with disruption of the blood-brain barrier (BBB) and expression of tumor necrosis alpha (TNF-α) and interleukin 1 ß (IL-1ß). In addition, interferon-inducible protein 10 (IP-10) was identified as playing an important role in NiV and HeV pathogenesis. These studies reveal novel information on the development and progression of NiV and HeV clinical disease, provide a mechanism for the differences in transmission observed between NiV and HeV outbreaks, and identify specific cytokines and chemokines that serve as important targets for treatment.


Asunto(s)
Infecciones por Henipavirus/patología , Henipavirus/fisiología , Animales , Barrera Hematoencefálica , Cricetinae , Modelos Animales de Enfermedad , Femenino , Infecciones por Henipavirus/virología , Inmunohistoquímica , Mesocricetus , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Resultado del Tratamiento , Tropismo Viral , Replicación Viral
19.
J Med Primatol ; 40(3): 200-4, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21401622

RESUMEN

An SIV-infected rhesus macaque presented with anemia, hypercalcemia, and hyperglobulinemia. Neoplastic round cells with plasma cell morphology infiltrated multiple organs and stained immunohistochemically positive for CD45, MUM1/IRF4, CD138, VS38C, and Kappa light chain and variably positive for CD20 and CD79a, consistent with a B-cell neoplasm with plasma cell differentiation.


Asunto(s)
Diferenciación Celular , Hipergammaglobulinemia/veterinaria , Leucemia de Células Plasmáticas/veterinaria , Macaca mulatta , Células Plasmáticas/patología , Síndrome de Inmunodeficiencia Adquirida del Simio/complicaciones , Virus de la Inmunodeficiencia de los Simios , Animales , Femenino , Hipergammaglobulinemia/complicaciones , Hipergammaglobulinemia/diagnóstico , Hipergammaglobulinemia/patología , Leucemia de Células Plasmáticas/complicaciones , Leucemia de Células Plasmáticas/diagnóstico , Leucemia de Células Plasmáticas/patología , Activación de Linfocitos
20.
PLoS One ; 16(10): e0258872, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34699550

RESUMEN

Retinal homeostasis relies on intricate coordination of cell death and survival in response to stress and damage. Signaling mechanisms that coordinate this process in the adult retina remain poorly understood. Here we identify Decapentaplegic (Dpp) signaling in Drosophila and its mammalian homologue Transforming Growth Factor-beta (TGFß) superfamily, that includes TGFß and Bone Morphogenetic Protein (BMP) signaling arms, as central mediators of retinal neuronal death and tissue survival following acute damage. Using a Drosophila model for UV-induced retinal damage, we show that Dpp released from immune cells promotes tissue loss after UV-induced retinal damage. Interestingly, we find a dynamic response of retinal cells to this signal: in an early phase, Dpp-mediated stimulation of Saxophone/Smox signaling promotes apoptosis, while at a later stage, stimulation of the Thickveins/Mad axis promotes tissue repair and survival. This dual role is conserved in the mammalian retina through the TGFß/BMP signaling, as supplementation of BMP4 or inhibition of TGFß using small molecules promotes retinal cell survival, while inhibition of BMP negatively affects cell survival after light-induced photoreceptor damage and NMDA induced inner retinal neuronal damage. Our data identify key evolutionarily conserved mechanisms by which retinal homeostasis is maintained.


Asunto(s)
Proteínas de Drosophila/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Retina/metabolismo , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Apoptosis/fisiología , Drosophila , Retina/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA