Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38648186

RESUMEN

RATIONALE: Early identification of children with poorly controlled asthma is imperative for optimizing treatment strategies. The analysis of exhaled volatile organic compounds (VOCs) is an emerging approach to identify prognostic and diagnostic biomarkers in pediatric asthma. OBJECTIVES: To assess the accuracy of gas chromatography-mass spectrometry based exhaled metabolite analysis to differentiate between controlled and uncontrolled pediatric asthma. METHODS: This study encompassed a discovery (SysPharmPediA) and validation phase (U-BIOPRED, PANDA). Firstly, exhaled VOCs that discriminated asthma control levels were identified. Subsequently, outcomes were validated in two independent cohorts. Patients were classified as controlled or uncontrolled, based on asthma control test scores and number of severe attacks in the past year. Additionally, potential of VOCs in predicting two or more future severe asthma attacks in SysPharmPediA was evaluated. MEASUREMENTS AND MAIN RESULTS: Complete data were available for 196 children (SysPharmPediA=100, U-BIOPRED=49, PANDA=47). In SysPharmPediA, after randomly splitting the population into training (n=51) and test sets (n=49), three compounds (acetophenone, ethylbenzene, and styrene) distinguished between uncontrolled and controlled asthmatics. The area under the receiver operating characteristic curve (AUROCC) for training and test sets were respectively: 0.83 (95% CI: 0.65-1.00) and 0.77 (95% CI: 0.58-0.96). Combinations of these VOCs resulted in AUROCCs of 0.74 ±0.06 (UBIOPRED) and 0.68 ±0.05 (PANDA). Attacks prediction tests, resulted in AUROCCs of 0.71 (95% CI 0.51-0.91) and 0.71 (95% CI 0.52-0.90) for training and test sets. CONCLUSIONS: Exhaled metabolites analysis might enable asthma control classification in children. This should stimulate further development of exhaled metabolites-based point-of-care tests in asthma.

2.
BMC Bioinformatics ; 25(1): 26, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225565

RESUMEN

BACKGROUND: In recent years, human microbiome studies have received increasing attention as this field is considered a potential source for clinical applications. With the advancements in omics technologies and AI, research focused on the discovery for potential biomarkers in the human microbiome using machine learning tools has produced positive outcomes. Despite the promising results, several issues can still be found in these studies such as datasets with small number of samples, inconsistent results, lack of uniform processing and methodologies, and other additional factors lead to lack of reproducibility in biomedical research. In this work, we propose a methodology that combines the DADA2 pipeline for 16s rRNA sequences processing and the Recursive Ensemble Feature Selection (REFS) in multiple datasets to increase reproducibility and obtain robust and reliable results in biomedical research. RESULTS: Three experiments were performed analyzing microbiome data from patients/cases in Inflammatory Bowel Disease (IBD), Autism Spectrum Disorder (ASD), and Type 2 Diabetes (T2D). In each experiment, we found a biomarker signature in one dataset and applied to 2 other as further validation. The effectiveness of the proposed methodology was compared with other feature selection methods such as K-Best with F-score and random selection as a base line. The Area Under the Curve (AUC) was employed as a measure of diagnostic accuracy and used as a metric for comparing the results of the proposed methodology with other feature selection methods. Additionally, we use the Matthews Correlation Coefficient (MCC) as a metric to evaluate the performance of the methodology as well as for comparison with other feature selection methods. CONCLUSIONS: We developed a methodology for reproducible biomarker discovery for 16s rRNA microbiome sequence analysis, addressing the issues related with data dimensionality, inconsistent results and validation across independent datasets. The findings from the three experiments, across 9 different datasets, show that the proposed methodology achieved higher accuracy compared to other feature selection methods. This methodology is a first approach to increase reproducibility, to provide robust and reliable results.


Asunto(s)
Trastorno del Espectro Autista , Investigación Biomédica , Diabetes Mellitus Tipo 2 , Microbiota , Humanos , ARN Ribosómico 16S/genética , Reproducibilidad de los Resultados , Diabetes Mellitus Tipo 2/genética , Aprendizaje Automático , Biomarcadores , Microbiota/genética
3.
Acta Pharmacol Sin ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589690

RESUMEN

Autism spectrum disorder (ASD) is a cluster of neurodevelopmental disorders characterized by deficits in communication and behavior. Increasing evidence suggests that the microbiota-gut-brain axis and the likely related immune imbalance may play a role in the development of this disorder. Gastrointestinal deficits and gut microbiota dysfunction have been linked to the development or severity of autistic behavior. Therefore, treatments that focus on specific diets may improve gastrointestinal function and aberrant behavior in individuals with ASD. In this study, we investigated whether a diet containing specific prebiotic fibers, namely, 3% galacto-oligosaccharide/fructo-oligosaccharide (GOS/FOS; 9:1), can mitigate the adverse effects of in utero exposure to valproic acid (VPA) in mice. Pregnant BALB/cByJ dams were injected with VPA (600 mg/kg, sc.) or phosphate-buffered saline (PBS) on gestational day 11 (G11). Male offspring were divided into four groups: (1) in utero PBS-exposed with a control diet, (2) in utero PBS-exposed with GOS/FOS diet, (3) in utero VPA-exposed with a control diet, and (4) in utero VPA-exposed with GOS/FOS diet. Dietary intervention started from birth and continued throughout the duration of the experiment. We showed that the prebiotic diet normalized VPA-induced alterations in male offspring, including restoration of key microbial taxa, intestinal permeability, peripheral immune homeostasis, reduction of neuroinflammation in the cerebellum, and impairments in social behavior and cognition in mice. Overall, our research provides valuable insights into the gut-brain axis involvement in ASD development. In addition, dietary interventions might correct the disbalance in gut microbiota and immune responses and, ultimately, might improve detrimental behavioral outcomes in ASD.

4.
Am J Respir Crit Care Med ; 208(2): 142-154, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37163754

RESUMEN

Rationale: Children with preschool wheezing or school-age asthma are reported to have airway microbial imbalances. Objectives: To identify clusters in children with asthma or wheezing using oropharyngeal microbiota profiles. Methods: Oropharyngeal swabs from the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) pediatric asthma or wheezing cohort were characterized using 16S ribosomal RNA gene sequencing, and unsupervised hierarchical clustering was performed on the Bray-Curtis ß-diversity. Enrichment scores of the Molecular Signatures Database hallmark gene sets were computed from the blood transcriptome using gene set variation analysis. Children with severe asthma or severe wheezing were followed up for 12-18 months, with assessment of the frequency of exacerbations. Measurements and Main Results: Oropharyngeal samples from 241 children (age range, 1-17 years; 40% female) revealed four taxa-driven clusters dominated by Streptococcus, Veillonella, Rothia, and Haemophilus. The clusters showed significant differences in atopic dermatitis, grass pollen sensitization, FEV1% predicted after salbutamol, and annual asthma exacerbation frequency during follow-up. The Veillonella cluster was the most allergic and included the highest percentage of children with two or more exacerbations per year during follow-up. The oropharyngeal clusters were different in the enrichment scores of TGF-ß (transforming growth factor-ß) (highest in the Veillonella cluster) and Wnt/ß-catenin signaling (highest in the Haemophilus cluster) transcriptomic pathways in blood (all q values <0.05). Conclusions: Analysis of the oropharyngeal microbiota of children with asthma or wheezing identified four clusters with distinct clinical characteristics (phenotypes) that associate with risk for exacerbation and transcriptomic pathways involved in airway remodeling. This suggests that further exploration of the oropharyngeal microbiota may lead to novel pathophysiologic insights and potentially new treatment approaches.


Asunto(s)
Asma , Hipersensibilidad , Microbiota , Femenino , Masculino , Humanos , Transcriptoma , Ruidos Respiratorios/genética , Asma/genética , Microbiota/genética
5.
Mol Cell Neurosci ; 124: 103805, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36592799

RESUMEN

Intestinal bacteria-associated para-cresyl sulfate (pCS) and 4-ethylphenyl sulfate (4EPS) are elevated in autism spectrum disorder (ASD). Both metabolites can induce ASD-like behaviors in mice, but the molecular mechanisms are not known. Phosphatase and tensin homolog (PTEN) is a susceptibility gene for ASD. The present study investigated the relation between pCS and 4EPS and PTEN in ASD in a valproic acid (VPA)-induced murine ASD model and an in vitro LPS-activated microglial model. The VPA-induced intestinal inflammation and compromised permeability in the distal ileum was not associated with changes of PTEN expression and phosphorylation. In contrast, VPA reduced PTEN expression in the hippocampus of mice. In vitro results show that pCS and 4EPS reduced PTEN expression and derailed innate immune response of BV2 microglial cells. The PTEN inhibitor VO-OHpic did not affect innate immune response of microglial cells. In conclusion, PTEN does not play a role in intestinal inflammation and compromised permeability in VPA-induced murine model for ASD. Although pCS and 4EPS reduced PTEN expression in microglial cells, PTEN is not involved in the pCS and 4EPS-induced derailed innate immune response of microglial cells. Further studies are needed to investigate the possible involvement of reduced PTEN expression in the ASD brain regarding synapse function and neuronal connectivity.


Asunto(s)
Trastorno del Espectro Autista , Animales , Ratones , Trastorno del Espectro Autista/genética , Modelos Animales de Enfermedad , Inflamación , Fosfohidrolasa PTEN/metabolismo , Ácido Valproico
6.
Pediatr Allergy Immunol ; 34(2): e13919, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36825736

RESUMEN

BACKGROUND: Uncontrolled asthma can lead to severe exacerbations and reduced quality of life. Research has shown that the microbiome may be linked with asthma characteristics; however, its association with asthma control has not been explored. We aimed to investigate whether the gastrointestinal microbiome can be used to discriminate between uncontrolled and controlled asthma in children. METHODS: 143 and 103 feces samples were obtained from 143 children with moderate-to-severe asthma aged 6 to 17 years from the SysPharmPediA study. Patients were classified as controlled or uncontrolled asthmatics, and their microbiome at species level was compared using global (alpha/beta) diversity, conventional differential abundance analysis (DAA, analysis of compositions of microbiomes with bias correction), and machine learning [Recursive Ensemble Feature Selection (REFS)]. RESULTS: Global diversity and DAA did not find significant differences between controlled and uncontrolled pediatric asthmatics. REFS detected a set of taxa, including Haemophilus and Veillonella, differentiating uncontrolled and controlled asthma with an average classification accuracy of 81% (saliva) and 86% (feces). These taxa showed enrichment in taxa previously associated with inflammatory diseases for both sampling compartments, and with COPD for the saliva samples. CONCLUSION: Controlled and uncontrolled children with asthma can be differentiated based on their gastrointestinal microbiome using machine learning, specifically REFS. Our results show an association between asthma control and the gastrointestinal microbiome. This suggests that the gastrointestinal microbiome may be a potential biomarker for treatment responsiveness and thereby help to improve asthma control in children.


Asunto(s)
Asma , Microbiota , Humanos , Niño , Calidad de Vida , Asma/tratamiento farmacológico , Bacterias , Heces/microbiología
7.
Cell Mol Life Sci ; 79(2): 80, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35044528

RESUMEN

The gut and brain link via various metabolic and signalling pathways, each with the potential to influence mental, brain and cognitive health. Over the past decade, the involvement of the gut microbiota in gut-brain communication has become the focus of increased scientific interest, establishing the microbiota-gut-brain axis as a field of research. There is a growing number of association studies exploring the gut microbiota's possible role in memory, learning, anxiety, stress, neurodevelopmental and neurodegenerative disorders. Consequently, attention is now turning to how the microbiota can become the target of nutritional and therapeutic strategies for improved brain health and well-being. However, while such strategies that target the gut microbiota to influence brain health and function are currently under development with varying levels of success, still very little is yet known about the triggers and mechanisms underlying the gut microbiota's apparent influence on cognitive or brain function and most evidence comes from pre-clinical studies rather than well controlled clinical trials/investigations. Filling the knowledge gaps requires establishing a standardised methodology for human studies, including strong guidance for specific focus areas of the microbiota-gut-brain axis, the need for more extensive biological sample analyses, and identification of relevant biomarkers. Other urgent requirements are new advanced models for in vitro and in vivo studies of relevant mechanisms, and a greater focus on omics technologies with supporting bioinformatics resources (training, tools) to efficiently translate study findings, as well as the identification of relevant targets in study populations. The key to building a validated evidence base rely on increasing knowledge sharing and multi-disciplinary collaborations, along with continued public-private funding support. This will allow microbiota-gut-brain axis research to move to its next phase so we can identify realistic opportunities to modulate the microbiota for better brain health.


Asunto(s)
Eje Cerebro-Intestino , Encéfalo/fisiología , Microbioma Gastrointestinal , Animales , Encéfalo/fisiopatología , Cognición , Humanos , Redes y Vías Metabólicas , Transducción de Señal
8.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L251-L265, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35699308

RESUMEN

Brain-related comorbidities are frequently observed in chronic obstructive pulmonary disease (COPD) and are related to increased disease progression and mortality. To date, it is unclear which mechanisms are involved in the development of brain-related problems in COPD. In this study, a cigarette smoke and lipopolysaccharide (LPS) exposure murine model was used to induce COPD-like features and assess the impact on brain and behavior. Mice were daily exposed to cigarette smoke for 72 days, except for days 42, 52, and 62, on which mice were intratracheally exposed to the bacterial trigger LPS. Emphysema and pulmonary inflammation as well as behavior and brain pathology were assessed. Cigarette smoke-exposed mice showed increased alveolar enlargement and numbers of macrophages and neutrophils in bronchoalveolar lavage. Cigarette smoke exposure resulted in lower body weight, which was accompanied by lower serum leptin levels, more time spent in the inner zone of the open field, and decreased claudin-5 and occludin protein expression levels in brain microvessels. Combined cigarette smoke and LPS exposure resulted in increased locomotion and elevated microglial activation in the hippocampus of the brain. These novel findings show that systemic inflammation observed after combined cigarette smoke and LPS exposure in this COPD model is associated with increased exploratory behavior. Findings suggest that neuroinflammation is present in the brain area involved in cognitive functioning and that blood-brain barrier integrity is compromised. These findings can contribute to our knowledge about possible processes involved in brain-related comorbidities in COPD, which is valuable for optimizing and developing therapy strategies.


Asunto(s)
Fumar Cigarrillos , Enfermedad Pulmonar Obstructiva Crónica , Animales , Encéfalo/metabolismo , Fumar Cigarrillos/efectos adversos , Modelos Animales de Enfermedad , Inflamación/patología , Lipopolisacáridos/efectos adversos , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad Pulmonar Obstructiva Crónica/patología , Nicotiana
9.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L266-L280, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35699290

RESUMEN

Chronic obstructive pulmonary disease (COPD) is often associated with intestinal comorbidities. In this study, changes in intestinal homeostasis and immunity in a cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced COPD model were investigated. Mice were exposed to cigarette smoke or air for 72 days, except days 42, 52, and 62 on which the mice were treated with saline or LPS via intratracheal instillation. Cigarette smoke exposure increased the airway inflammatory cell numbers, mucus production, and different inflammatory mediators, including C-reactive protein (CRP) and keratinocyte-derived chemokine (KC), in bronchoalveolar lavage (BAL) fluid and serum. LPS did not further impact airway inflammatory cell numbers or mucus production but decreased inflammatory mediator levels in BAL fluid. T helper (Th) 1 cells were enhanced in the spleen after cigarette smoke exposure; however, in combination with LPS, cigarette exposure caused an increase in Th1 and Th2 cells. Histomorphological changes were observed in the proximal small intestine after cigarette smoke exposure, and addition of LPS had no effect. Cigarette smoke activated the intestinal immune network for IgA production in the distal small intestine that was associated with increased fecal sIgA levels and enlargement of Peyer's patches. Cigarette smoke plus LPS decreased fecal sIgA levels and the size of Peyer's patches. In conclusion, cigarette smoke with or without LPS affects intestinal health as observed by changes in intestinal histomorphology and immune network for IgA production. Elevated systemic mediators might play a role in the lung-gut cross talk. These findings contribute to a better understanding of intestinal disorders related to COPD.


Asunto(s)
Fumar Cigarrillos , Enfermedad Pulmonar Obstructiva Crónica , Animales , Líquido del Lavado Bronquioalveolar , Fumar Cigarrillos/efectos adversos , Modelos Animales de Enfermedad , Homeostasis , Inmunoglobulina A/efectos adversos , Inmunoglobulina A/metabolismo , Inmunoglobulina A Secretora/metabolismo , Inmunoglobulina A Secretora/farmacología , Lipopolisacáridos/efectos adversos , Pulmón/metabolismo , Ratones , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Nicotiana
10.
Handb Exp Pharmacol ; 268: 471-486, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34085122

RESUMEN

In the western world the prevalence of atopic diseases such as food allergies is increasing highly significantly. One of the earliest and most prevalent food allergies occurring in the first year of life is cow's milk allergy. No treatment is available and only avoidance of the cow's milk allergens prevents the occurrence of an allergic reaction. Since cow's milk allergic children have an increased risk of developing other allergies later in life, investigating nutritional strategies to prevent the development of cow's milk allergy by developing oral tolerance is of high interest. Nutritional components such as prebiotics, probiotics, synbiotics and long-chain polyunsaturated fatty acids possess potential to support the maturation of the immune system early in life that might prevent the development of cow's milk allergy. The available research, so far, shows promising results particularly on the development of eczema. However, the preventive effects of the nutritional interventions on the development of food allergy are inconclusive. Future research may benefit from the combination of various dietary components. To clarify the preventive effects of the nutritional components in food allergy more randomized clinical trials are needed.


Asunto(s)
Hipersensibilidad a los Alimentos , Hipersensibilidad a la Leche , Probióticos , Animales , Bovinos , Dieta , Femenino , Hipersensibilidad a la Leche/prevención & control , Prevalencia
11.
J Allergy Clin Immunol ; 147(1): 123-134, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32353491

RESUMEN

BACKGROUND: Asthma is a heterogeneous disease characterized by distinct phenotypes with associated microbial dysbiosis. OBJECTIVES: Our aim was to identify severe asthma phenotypes based on sputum microbiome profiles and assess their stability after 12 to 18 months. A further aim was to evaluate clusters' robustness after inclusion of an independent cohort of patients with mild-to-moderate asthma. METHODS: In this longitudinal multicenter cohort study, sputum samples were collected for microbiome profiling from a subset of the Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes adult patient cohort at baseline and after 12 to 18 months of follow-up. Unsupervised hierarchical clustering was performed by using the Bray-Curtis ß-diversity measure of microbial profiles. For internal validation, partitioning around medoids, consensus cluster distribution, bootstrapping, and topological data analysis were applied. Follow-up samples were studied to evaluate within-patient clustering stability in patients with severe asthma. Cluster robustness was evaluated by using an independent cohort of patients with mild-to-moderate asthma. RESULTS: Data were available for 100 subjects with severe asthma (median age 55 years; 42% males). Two microbiome-driven clusters were identified; they were characterized by differences in asthma onset, smoking status, residential locations, percentage of blood and/or sputum neutrophils and macrophages, lung spirometry results, and concurrent asthma medications (all P values < .05). The cluster 2 patients displayed a commensal-deficient bacterial profile that was associated with worse asthma outcomes than those of the cluster 1 patients. Longitudinal clusters revealed high relative stability after 12 to 18 months in those with severe asthma. Further inclusion of an independent cohort of 24 patients with mild-to-moderate asthma was consistent with the clustering assignments. CONCLUSION: Unbiased microbiome-driven clustering revealed 2 distinct robust phenotypes of severe asthma that exhibited relative overtime stability. This suggests that the sputum microbiome may serve as a biomarker for better characterizing asthma phenotypes.


Asunto(s)
Asma/microbiología , Microbiota , Esputo/microbiología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Manejo de Especímenes , Factores de Tiempo
12.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499067

RESUMEN

Human milk oligosaccharides (HMOs) and their most abundant component, 2'-Fucosyllactose (2'-FL), are known to be immunomodulatory. Previously, it was shown that HMOs and 2'-FL bind to the C-type lectin receptor DC-SIGN. Here we show, using a ligand-receptor competition assay, that a whole mixture of HMOs from pooled human milk (HMOS) and 2'-FL inhibit the binding of the carbohydrate-binding receptor DC-SIGN to its prototypical ligands, fucose and the oligosaccharide Lewis-B, (Leb) in a dose-dependent way. Interestingly, such inhibition by HMOS and 2'-FL was not detected for another C-type lectin, langerin, which is evolutionarily similar to DC-SIGN. The cell-ligand competition assay using DC-SIGN expressing cells confirmed that 2'-FL inhibits the binding of DC-SIGN to Leb. Molecular dynamic (MD) simulations show that 2'-FL exists in a preorganized bioactive conformation before binding to DC-SIGN and this conformation is retained after binding to DC-SIGN. Leb has more flexible conformations and utilizes two binding modes, which operate one at a time via its two fucoses to bind to DC-SIGN. Our hypothesis is that 2'-FL may have a reduced entropic penalty due to its preorganized state, compared to Leb, and it has a lower binding enthalpy, suggesting a better binding to DC-SIGN. Thus, due to the better binding to DC-SIGN, 2'-FL may replace Leb from its binding pocket in DC-SIGN. The MD simulations also showed that 2'-FL does not bind to langerin. Our studies confirm 2'-FL as a specific ligand for DC-SIGN and suggest that 2'-FL can replace other DC-SIGN ligands from its binding pocket during the ligand-receptor interactions in possible immunomodulatory processes.


Asunto(s)
Lectinas Tipo C , Leche Humana , Trisacáridos , Humanos , Fucosa/análisis , Lectinas Tipo C/metabolismo , Ligandos , Leche Humana/metabolismo , Receptores de Superficie Celular/metabolismo , Trisacáridos/farmacología
13.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36232346

RESUMEN

The bacterial metabolite 4-methylphenol (para-cresol or p-cresol) and its derivative p-cresyl sulfate (pCS) are elevated in the urine and feces of children with autism spectrum disorder (ASD). It has been shown that p-cresol administration induces social behavior deficits and repetitive behavior in mice. However, the mechanisms of p-cresol, specifically its metabolite pCS that can reach the brain, in ASD remain to be investigated. The pCS has been shown to inhibit LPS-stimulated inflammatory response. A Disintegrin And Metalloprotease 10 (ADAM10) and A Disintegrin And Metalloprotease 17 (ADAM17) are thought to regulate microglial immune response by cleaving membrane-bound proteins. In the present study, a neuroinflammation model of LPS-activated BV2 microglia has been used to unveil the potential molecular mechanism of pCS in ASD pathogenesis. In microglial cells pCS treatment decreases the expression or maturation of ADAM10 and ADAM17. In addition, pCS treatment attenuates TNF-α and IL-6 releases as well as phagocytosis activity of microglia. In in vitro ADAM10/17 inhibition experiments, either ADAM10 or ADAM17 inhibition reduces constitutive and LPS-activated release of TNF-α, TNFR-1 and IL-6R by microglial cells, while it increases constitutive and LPS-activated microglial phagocytotic activity. The in vivo results further confirm the involvement of ADAM10 and ADAM17 in ASD pathogenesis. In in utero VPA-exposed male mice, elevated concentration in serum of p-cresol-associated metabolites pCS and p-cresyl glucuronide (pCG) is associated with a VPA-induced increased ADAM10 maturation, and a decreased ADAM17 maturation that is related with attenuated levels of soluble TNF-α and TGF-ß1 in the mice brain. Overall, the present study demonstrates a partial role of ADAM10 and ADAM17 in the derailed innate immune response of microglial cells associated with pCS-induced ASD pathogenesis.


Asunto(s)
Proteínas ADAM , Proteína ADAM17/metabolismo , Trastorno del Espectro Autista , Proteínas ADAM/metabolismo , Proteína ADAM10/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Trastorno del Espectro Autista/etiología , Cresoles , Desintegrinas , Glucurónidos , Interleucina-6/metabolismo , Lipopolisacáridos/toxicidad , Masculino , Proteínas de la Membrana , Ratones , Microglía/metabolismo , Sulfatos , Ésteres del Ácido Sulfúrico , Factor de Crecimiento Transformador beta1 , Factor de Necrosis Tumoral alfa/metabolismo
14.
J Allergy Clin Immunol ; 146(5): 1045-1055, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32531371

RESUMEN

BACKGROUND: Electronic noses (eNoses) are emerging point-of-care tools that may help in the subphenotyping of chronic respiratory diseases such as asthma. OBJECTIVE: We aimed to investigate whether eNoses can classify atopy in pediatric and adult patients with asthma. METHODS: Participants with asthma and/or wheezing from 4 independent cohorts were included; BreathCloud participants (n = 429), Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes adults (n = 96), Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes pediatric participants (n = 100), and Pharmacogenetics of Asthma Medication in Children: Medication with Anti-Inflammatory Effects 2 participants (n = 30). Atopy was defined as a positive skin prick test result (≥3 mm) and/or a positive specific IgE level (≥0.35 kU/L) for common allergens. Exhaled breath profiles were measured by using either an integrated eNose platform or the SpiroNose. Data were divided into 2 training and 2 validation sets according to the technology used. Supervised data analysis involved the use of 3 different machine learning algorithms to classify patients with atopic versus nonatopic asthma with reporting of areas under the receiver operating characteristic curves as a measure of model performance. In addition, an unsupervised approach was performed by using a bayesian network to reveal data-driven relationships between eNose volatile organic compound profiles and asthma characteristics. RESULTS: Breath profiles of 655 participants (n = 601 adults and school-aged children with asthma and 54 preschool children with wheezing [68.2% of whom were atopic]) were included in this study. Machine learning models utilizing volatile organic compound profiles discriminated between atopic and nonatopic participants with areas under the receiver operating characteristic curves of at least 0.84 and 0.72 in the training and validation sets, respectively. The unsupervised approach revealed that breath profiles classifying atopy are not confounded by other patient characteristics. CONCLUSION: eNoses accurately detect atopy in individuals with asthma and wheezing in cohorts with different age groups and could be used in asthma phenotyping.


Asunto(s)
Asma/diagnóstico , Nariz Electrónica , Hipersensibilidad Inmediata/diagnóstico , Adolescente , Adulto , Biomarcadores , Niño , Preescolar , Simulación por Computador , Espiración , Humanos , Lactante , Aprendizaje Automático , Persona de Mediana Edad , Fenotipo
15.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34576216

RESUMEN

Autism Spectrum Disorder (ASD) is a set of neurodevelopmental disorders characterised by behavioural impairment and deficiencies in social interaction and communication. A recent study estimated that 1 in 89 children have developed some form of ASD in European countries. Moreover, there is no specific treatment and since ASD is not a single clinical entity, the identification of molecular biomarkers for diagnosis remains challenging. Besides behavioural deficiencies, individuals with ASD often develop comorbid medical conditions including intestinal problems, which may reflect aberrations in the bidirectional communication between the brain and the gut. The impact of faecal microbial composition in brain development and behavioural functions has been repeatedly linked to ASD, as well as changes in the metabolic profile of individuals affected by ASD. Since metabolism is one of the major drivers of microbiome-host interactions, this review aims to report emerging literature showing shifts in gut microbiota metabolic function in ASD. Additionally, we discuss how these changes may be involved in and/or perpetuate ASD pathology. These valuable insights can help us to better comprehend ASD pathogenesis and may provide relevant biomarkers for improving diagnosis and identifying new therapeutic targets.


Asunto(s)
Trastorno del Espectro Autista/microbiología , Trastorno del Espectro Autista/fisiopatología , Microbioma Gastrointestinal , Conducta , Biomarcadores/metabolismo , Barrera Hematoencefálica , Encéfalo/fisiología , Niño , Preescolar , Heces , Femenino , Humanos , Masculino , Metaboloma , Neurotransmisores/metabolismo , Polisacáridos/química
16.
Int J Mol Sci ; 22(9)2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-34066693

RESUMEN

Chronic obstructive pulmonary disease (COPD) caused by cigarette smoke (CS) is featured by oxidative stress and chronic inflammation. Due to the poor efficacy of standard glucocorticoid therapy, new treatments are required. Here, we investigated whether the novel compound SUL-151 with mitoprotective properties can be used as a prophylactic and therapeutic treatment in a murine CS-induced inflammation model. SUL-151 (4 mg/kg), budesonide (500 µg/kg), or vehicle were administered via oropharyngeal instillation in this prophylactic and therapeutic treatment setting. The number of immune cells was determined in the bronchoalveolar lavage fluid (BALF). Oxidative stress response, mitochondrial adenosine triphosphate (ATP) production, and mitophagy-related proteins were measured in lung homogenates. SUL-151 significantly decreased more than 70% and 50% of CS-induced neutrophils in BALF after prophylactic and therapeutic administration, while budesonide showed no significant reduction in neutrophils. Moreover, SUL-151 prevented the CS-induced decrease in ATP and mitochondrial mtDNA and an increase in putative protein kinase 1 expression in the lung homogenates. The concentration of SUL-151 was significantly correlated with malondialdehyde level and radical scavenging activity in the lungs. SUL-151 inhibited the increased pulmonary inflammation and mitochondrial dysfunction in this CS-induced inflammation model, which implied that SUL-151 might be a promising candidate for COPD treatment.


Asunto(s)
Fumar Cigarrillos/efectos adversos , Neutrófilos/patología , Piperazinas/uso terapéutico , Animales , Bronquios/patología , Líquido del Lavado Bronquioalveolar/citología , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Femenino , Humanos , Interleucina-8/biosíntesis , Pulmón/patología , Ratones Endogámicos BALB C , Neutrófilos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Piperazinas/administración & dosificación , Piperazinas/química , Piperazinas/farmacología , Neumonía/tratamiento farmacológico , Proteínas Quinasas/metabolismo
17.
Eur J Nutr ; 59(Suppl 1): 1-10, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32350655

RESUMEN

Malnutrition in an obese world was the fitting title of the 13th Federation of European Nutrition Societies (FENS) conference held in October 2019. Many individuals do not eat a healthy, well-balanced diet, and this is now understood to be a major driver of increased disease risk and illness. Moreover, both our current eating patterns and the food system as a whole are environmentally unsustainable, threatening the planetary systems we depend on for survival. As we attempt to feed a growing global population, food systems will increasingly be confronted with their environmental impacts, with the added challenge of climate change-induced threats to food production. As we move into the third decade of the twenty-first century, these challenges demand that the nutrition research community reconsider its scope, concepts, methods, and societal role. At a pre-meeting workshop held at the FENS conference, over 70 researchers active in the field explored ways to advance the discipline's capacity to address cross-cutting issues of personal, public and planetary health. Using the world cafe method, four themed discussion tables explored (a) the breadth of scientific domains needed to meet the current challenges, (b) the nature and definition of the shifting concepts in nutrition sciences, (c) the next-generation methods required and (d) communication and organisational challenges and opportunities. As a follow-up to earlier work [1], here we report the highlights of the discussions, and propose the next steps to advance responsible research and innovation in the domain of nutritional science.


Asunto(s)
Ciencias de la Nutrición/tendencias , Comportamiento del Consumidor , Dieta Saludable , Abastecimiento de Alimentos , Salud Global , Educación en Salud , Humanos , Desnutrición/prevención & control
18.
Nutr Neurosci ; 23(11): 896-910, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30871432

RESUMEN

Objective: The intestinal microbiota is acknowledged to be essential in brain development and behaviour. Their composition can be modulated by prebiotics such as short-chain galacto-oligosaccharides (scGOS) and long-chain fructo-oligosaccharide (lcFOS). Several studies reported potential health benefit of prebiotics on behaviour. As the prebiotic mixture of scGOS and lcFOS is included in infant formula, we investigated the effects of dietary supplementation with this specific mixture from the day of birth onwards on behaviour and intestinal microbiota development in mice. Method: Healthy male BALB/cByJ mice received, from day of birth, a dietary supplement with or without 3% scGOS:lcFOS (9:1). Behavioural tests were performed pre-weaning, in adolescence, early adulthood and adulthood. We assessed faecal microbiota compositions over time, caecal short-chain fatty acids as well as brain mRNA expression of Htr1a, Htr1b and Tph2 and monoamine levels. Results: Compared to control fed mice, scGOS:lcFOS fed mice showed reduced anxiety-like and repetitive behaviour over time and improved social behaviour in adulthood. The serotonergic system in the prefrontal cortex (PFC) and somatosensory cortex (SSC) was affected by the scGOS:lcFOS. In the PFC, mRNA expression of brain-derived neurotrophic factor (Bdnf) was enhanced in scGOS:lcFOS fed mice. Although the bacterial diversity of the intestinal microbiota was unaffected by the scGOS:lcFOS diet, microbiota composition differed between the scGOS:lcFOS and the control fed mice over time. Moreover, an increased saccharolytic and decreased proteolytic fermentation activity were observed in caecum content. Discussion: Supplementing the diet with scGOS:lcFOS from the day of birth is associated with reduced anxiety-like and improved social behaviour during the developmental period and later in life, and modulates the composition and activity of the intestinal microbiota in healthy male BALB/c mice. These data provide further evidence of the potential impact of scGOS:lcFOS on behaviour at several developmental stages throughout life and strengthen the insights in the interplay between the developing intestine and brain.


Asunto(s)
Ansiedad/microbiología , Microbioma Gastrointestinal , Oligosacáridos/administración & dosificación , Prebióticos/administración & dosificación , Conducta Social , Animales , Ansiedad/prevención & control , Conducta Animal , Monoaminas Biogénicas/metabolismo , Encéfalo/metabolismo , Masculino , Ratones Endogámicos BALB C , Vocalización Animal
19.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374371

RESUMEN

Autism Spectrum Disorder (ASD) is a spectrum of disorders that are characterized by problems in social interaction and repetitive behavior. The disease is thought to develop from changes in brain development at an early age, although the exact mechanisms are not known yet. In addition, a significant number of people with ASD develop problems in the intestinal tract. A Disintegrin And Metalloproteases (ADAMs) include a group of enzymes that are able to cleave membrane-bound proteins. ADAM10 and ADAM17 are two members of this family that are able to cleave protein substrates involved in ASD pathogenesis, such as specific proteins important for synapse formation, axon signaling and neuroinflammation. All these pathological mechanisms are involved in ASD. Besides the brain, ADAM10 and ADAM17 are also highly expressed in the intestines. ADAM10 and ADAM17 have implications in pathways that regulate gut permeability, homeostasis and inflammation. These metalloproteases might be involved in microbiota-gut-brain axis interactions in ASD through the regulation of immune and inflammatory responses in the intestinal tract. In this review, the potential roles of ADAM10 and ADAM17 in the pathology of ASD and as targets for new therapies will be discussed, with a focus on the gut-brain axis.


Asunto(s)
Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Trastorno del Espectro Autista/genética , Proteínas de la Membrana/metabolismo , Animales , Trastorno del Espectro Autista/metabolismo , Axones/metabolismo , Barrera Hematoencefálica/metabolismo , Cadherinas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Quimiocina CX3CL1/metabolismo , Sistema Nervioso Entérico/metabolismo , Microbioma Gastrointestinal , Tracto Gastrointestinal/metabolismo , Humanos , Sistema Inmunológico , Inflamación , Glicoproteínas de Membrana/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Protocadherinas , Receptores Inmunológicos/metabolismo , Receptores de Interleucina-6/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
20.
Gut ; 68(5): 829-843, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30554160

RESUMEN

OBJECTIVE: Recent evidence suggesting an important role of gut-derived inflammation in brain disorders has opened up new directions to explore the possible role of the gut-brain axis in neurodegenerative diseases. Given the prominence of dysbiosis and colonic dysfunction in patients with Parkinson's disease (PD), we propose that toll-like receptor 4 (TLR4)-mediated intestinal dysfunction could contribute to intestinal and central inflammation in PD-related neurodegeneration. DESIGN: To test this hypothesis we performed studies in both human tissue and a murine model of PD. Inflammation, immune activation and microbiota composition were measured in colonic samples from subjects with PD and healthy controls subjects and rotenone or vehicle-treated mice. To further assess the role of the TLR4 signalling in PD-induced neuroinflammation, we used TLR4-knockout (KO) mice in conjunction with oral rotenone administration to model PD. RESULTS: Patients with PD have intestinal barrier disruption, enhanced markers of microbial translocation and higher pro-inflammatory gene profiles in the colonic biopsy samples compared with controls. In this regard, we found increased expression of the bacterial endotoxin-specific ligand TLR4, CD3+ T cells, cytokine expression in colonic biopsies, dysbiosis characterised by a decrease abundance of SCFA-producing colonic bacteria in subjects with PD. Rotenone treatment in TLR4-KO mice revealed less intestinal inflammation, intestinal and motor dysfunction, neuroinflammation and neurodegeneration, relative to rotenone-treated wild-type animals despite the presence of dysbiotic microbiota in TLR4-KO mice. CONCLUSION: Taken together, these studies suggest that TLR4-mediated inflammation plays an important role in intestinal and/or brain inflammation, which may be one of the key factors leading to neurodegeneration in PD.


Asunto(s)
Colon/patología , Enfermedad de Parkinson/etiología , Receptor Toll-Like 4/fisiología , Animales , Complejo CD3/metabolismo , Estudios de Casos y Controles , Colon/metabolismo , Colon/microbiología , Modelos Animales de Enfermedad , Disbiosis/etiología , Disbiosis/metabolismo , Disbiosis/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA