Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Immunol ; 17(1): 43, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27825298

RESUMEN

BACKGROUND: The Major Histocompatibility Complex (MHC) class I family of genes encode for molecules that have well-conserved structures, but have evolved to perform diverse functions. The availability of the gray, short-tailed opossum, Monodelphis domestica whole genome sequence has allowed for analysis of MHC class I gene content in this marsupial. Utilization of a novel method to search for MHC related domain structures revealed a previously unknown family of MHC class I-related genes. These genes, named UT1-17, are clustered on chromosome 1 in the opossum, unlinked to the MHC region. UT genes are only found in marsupial and monotreme genomes, consistent with being ancient in mammals yet lost in eutherian mammals. This study investigates the expression and polymorphism of the UT loci in the opossum to gain insight into their possible function. RESULTS: Of the 17 opossum UT genes, most have restricted tissue transcription patterns, with the thymus and skin being the most common sites. Full-length structure of 11 UT transcripts revealed genes varying between five and eight exons, typical for class I family members. There were only two alternative splice variants found. The UT genes also have limited polymorphism and little evidence of positive selection. One locus, UT8, was chosen for further analysis due to its conservation amongst marsupials and generic characteristics. UT8 transcription is limited to developing αß thymocytes, and is absent from mature αß T cells in peripheral lymphoid tissues. CONCLUSION: The overall characteristics and features of UT genes including low polymorphism and restricted tissue expression make it likely that the molecules encoded by UT genes perform roles other than antigenic peptide presentation.


Asunto(s)
Evolución Biológica , Genes MHC Clase I/genética , Antígenos de Histocompatibilidad Clase I , Zarigüeyas/inmunología , Especificidad de Órganos , Animales , Secuencia de Bases , Análisis por Conglomerados , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Genoma , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Marsupiales/inmunología , Datos de Secuencia Molecular , Zarigüeyas/genética , Filogenia , Polimorfismo Genético , Ratas
2.
BMC Genomics ; 16: 535, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26194104

RESUMEN

BACKGROUND: Major histocompatibility complex (MHC) class I genes are found in the genomes of all jawed vertebrates. The evolution of this gene family is closely tied to the evolution of the vertebrate genome. Family members are frequently found in four paralogous regions, which were formed in two rounds of genome duplication in the early vertebrates, but in some species class Is have been subject to additional duplication or translocation, creating additional clusters. The gene family is traditionally grouped into two subtypes: classical MHC class I genes that are usually MHC-linked, highly polymorphic, expressed in a broad range of tissues and present endogenously-derived peptides to cytotoxic T-cells; and non-classical MHC class I genes generally have lower polymorphism, may have tissue-specific expression and have evolved to perform immune-related or non-immune functions. As immune genes can evolve rapidly and are subject to different selection pressure, we hypothesised that there may be divergent, as yet unannotated or uncharacterised class I genes. RESULTS: Application of a novel method of sensitive genome searching of available vertebrate genome sequences revealed a new, extensive sub-family of divergent MHC class I genes, denoted as UT, which has not previously been characterized. These class I genes are found in both American and Australian marsupials, and in monotremes, at an evolutionary chromosomal breakpoint, but are not present in non-mammalian genomes and have been lost from the eutherian lineage. We show that UT family members are expressed in the thymus of the gray short-tailed opossum and in other immune tissues of several Australian marsupials. Structural homology modelling shows that the proteins encoded by this family are predicted to have an open, though short, antigen-binding groove. CONCLUSIONS: We have identified a novel sub-family of putatively non-classical MHC class I genes that are specific to marsupials and monotremes. This family was present in the ancestral mammal and is found in extant marsupials and monotremes, but has been lost from the eutherian lineage. The function of this family is as yet unknown, however, their predicted structure may be consistent with presentation of antigens to T-cells.


Asunto(s)
Evolución Molecular , Genes MHC Clase I , Marsupiales/genética , Monotremata/genética , Secuencia de Aminoácidos , Animales , Australia , Secuencia de Bases , Genoma , Humanos , Filogenia
3.
Immunogenetics ; 67(4): 259-64, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25737310

RESUMEN

The gray short-tailed opossum Monodelphis domestica is one of the few marsupial species for which a high quality whole genome sequence is available and the major histocompatibility complex (MHC) region has been annotated. Previous analyses revealed only a single locus within the opossum MHC region, designated Modo-UA1, with the features expected for encoding a functionally classical class I α-chain. Nine other class I genes found within the MHC are highly divergent and have features usually associated with non-classical roles. The original annotation, however, was based on an early version of the opossum genome assembly. More recent analyses of allelic variation in individual opossums revealed too many Modo-UA1 sequences per individual to be accounted for by a single MHC class I locus found in the genome assembly. A reanalysis of a later generation assembly, MonDom5, revealed the presence of two additional loci, now designated Modo-UA3 and UA4, in a region that was expanded and more complete than in the earlier assembly. Modo-UA1, UA3, and UA4 are all transcribed, although Modo-UA4 transcripts are rarer. Modo-UA4 is also relatively non-polymorphic. Evidence presented support the accuracy of the later assembly and the existence of three related class I genes in the opossum, making opossums more typical of mammals and most tetrapods by having multiple apparent classical MHC class I loci.


Asunto(s)
Complejo Mayor de Histocompatibilidad/genética , Monodelphis/genética , Monodelphis/inmunología , Secuencia de Aminoácidos , Animales , Variación Genética , Filogenia , Alineación de Secuencia
4.
Front Physiol ; 14: 1305168, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38260096

RESUMEN

Introduction: Sperm storage within the uterovaginal junction (UVJ) of avian species occurs in specialized structures termed sperm storage tubules (SSTs) and allows for prolonged storage of semen, though the molecular mechanisms involved in semen preservation are not well understood. Little work has been done examining how function of the SSTs is impacted by insemination and by semen present in the SSTs. Methods: Transcriptome analysis was performed on isolated SSTs from turkey hens receiving no insemination (control), sham-insemination, or semen-insemination at three timepoints (D1, D30, and D90 post-insemination). Bioinformatic and functional annotation analyses were performed using CLC Genomics Workbench, Database for Annotation, Visualization, and Integrated Discovery (DAVID), and Ingenuity Pathway Analysis (IPA). Pairwise comparisons and k-medoids cluster analysis were utilized to decipher differential expression profiles in the treatment groups. Results: The SST transcriptome of the semen inseminated group exhibited the greatest differences within the group, with differences detectable for up to 90 days post insemination, while control and sham-inseminated groups were more similar. In the semen-inseminated samples, upregulation of pathways relating to classical and non-classical reproductive signaling, cytoskeletal remodeling, physiological parameters of the local UVJ environment, and cellular metabolism was observed. In the sham-inseminated samples, upregulation of immune pathways and non-reproductive endocrine hormones was observed. Discussion: This work provides insights into the molecular level changes of the SST in response to insemination as well as to the presence of semen. Results from this study may have direct implications on fertility rates as well as potential strategies for avian semen cryopreservation protocols.

5.
Poult Sci ; 97(10): 3698-3708, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29860518

RESUMEN

Cell lines of turkey sperm storage tubule (SST) epithelial cells were established. Turkey SSTs were dissected from freshly obtained uterovaginal junction (UVJ) tissue and placed in explant culture on various substrates and media. Primary cultures of SST epithelium only survived and grew from SST explants that were cultured on inactivated Sandoz inbred strain, thioguanine- and ouabain-resistance (STO) mouse feeder-cell layers in 12% fetal bovine serum-supplemented Dulbecco's Modified Eagle Medium mixed 1:1 with F12 nutrient mixture. Three independent primary colonies gave rise to 3 finite cell lines, SST-1, -2, and -3, which were continuously cultured for 8 to 16 passages at 1:3 passage ratios over a period of 3 to 4 mo. The cells were passaged by pretreatment with Y27632 and dissociation with Accutase. The SST cells grew as tightly knit monolayers on top of the feeder cells at a slow rate (approximately 96 h doubling time) at a medium pH of approximately 6.9. Lipid vacuoles were visible by light microscopy in the cells particularly at the periphery of growth. Transmission electron microscopy revealed the cells to be a polarized epithelium with apical microvilli and to have lateral tight-junction-like unions and associated desmosomes. Numerous secretory vesicles filled the upper portion of the cells' cytoplasm, and nuclei and other major organelles such as mitochondria, rough endoplasmic reticulum, and Golgi apparatus were distributed somewhat lower in the cytoplasm. The secretory vesicles resembled mucin secretory vesicles. Proteomic analysis by mass spectroscopy of the conditioned medium of the cells, and of the cells themselves, showed the cell lines did not secrete large amounts of any particular protein, and the analysis confirmed their epithelial character. In conclusion, the SST-derived cell lines resembled the mucus-secreting cells found in the epithelium lining the UVJ of the turkey's reproductive tract.


Asunto(s)
Técnicas de Cultivo de Célula/veterinaria , Línea Celular/ultraestructura , Células Epiteliales/citología , Animales , Técnicas de Cultivo de Célula/métodos , Línea Celular/metabolismo , Femenino , Técnicas In Vitro , Microscopía Electrónica de Transmisión/veterinaria , Pavos , Útero/citología , Vagina/citología
6.
PLoS Negl Trop Dis ; 11(6): e0005691, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28650976

RESUMEN

Schistosomiasis is a chronic parasitic disease caused by sexually dimorphic blood flukes of the genus Schistosoma. Praziquantel (PZQ) is the only drug widely available to treat the disease but does not kill juvenile parasites. Here we report the use of next generation sequencing to study the transcriptional effect of PZQ on murine hepatic inflammatory, immune and fibrotic responses to Schistosoma mansoni worms and eggs. An initial T helper cell 1 (Th1) response is induced against schistosomes in mice treated with drug vehicle (Vh) around the time egg laying begins, followed by a T helper cell 2 (Th2) response and the induction of genes whose action leads to granuloma formation and fibrosis. When PZQ is administered at this time, there is a significant reduction in egg burden yet the hepatic Th1, Th2 and fibrotic responses are still observed in the absence of granuloma formation suggesting some degree of gene regulation may be induced by antigens released from the dying adult worms. Quantitative real-time PCR was used to examine the relative expression of 16 juvenile and adult S. mansoni genes during infection and their response to Vh and PZQ treatment in vivo. While the response of stress genes in adult parasites suggests the worms were alive immediately following exposure to PZQ, they were unable to induce transcription of any of the 9 genes encoding ATP-binding cassette (ABC) transporters tested. In contrast, juvenile schistosomes were able to significantly induce the activities of ABCB, C and G family members, underscoring the possibility that these efflux systems play a major role in drug resistance.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/análisis , Antihelmínticos/administración & dosificación , Perfilación de la Expresión Génica , Hígado/patología , Praziquantel/administración & dosificación , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomiasis mansoni/patología , Animales , Modelos Animales de Enfermedad , Resistencia a Medicamentos , Secuenciación de Nucleótidos de Alto Rendimiento , Cirrosis Hepática/patología , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Células TH1/inmunología , Células Th2/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA