RESUMEN
Transmitted/founder (TF) simian-human immunodeficiency viruses (SHIVs) express HIV-1 envelopes modified at position 375 to efficiently infect rhesus macaques while preserving authentic HIV-1 Env biology. SHIV.C.CH505 is an extensively characterized virus encoding the TF HIV-1 Env CH505 mutated at position 375 shown to recapitulate key features of HIV-1 immunobiology, including CCR5-tropism, a tier 2 neutralization profile, reproducible early viral kinetics, and authentic immune responses. SHIV.C.CH505 is used frequently in nonhuman primate studies of HIV, but viral loads after months of infection are variable and typically lower than those in people living with HIV. We hypothesized that additional mutations besides Δ375 might further enhance virus fitness without compromising essential components of CH505 Env biology. From sequence analysis of SHIV.C.CH505-infected macaques across multiple experiments, we identified a signature of envelope mutations associated with higher viremia. We then used short-term in vivo mutational selection and competition to identify a minimally adapted SHIV.C.CH505 with just five amino acid changes that substantially improve virus replication fitness in macaques. Next, we validated the performance of the adapted SHIV in vitro and in vivo and identified the mechanistic contributions of selected mutations. In vitro, the adapted SHIV shows improved virus entry, enhanced replication on primary rhesus cells, and preserved neutralization profiles. In vivo, the minimally adapted virus rapidly outcompetes the parental SHIV with an estimated growth advantage of 0.14 days-1 and persists through suppressive antiretroviral therapy to rebound at treatment interruption. Here, we report the successful generation of a well-characterized, minimally adapted virus, termed SHIV.C.CH505.v2, with enhanced replication fitness and preserved native Env properties that can serve as a new reagent for NHP studies of HIV-1 transmission, pathogenesis, and cure.
Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , Macaca mulatta/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Replicación Viral/fisiologíaRESUMEN
Traditional agency theory views the proper role of the board chair exclusively as providing independent oversight to monitor and control the CEO. Recently, firms have introduced innovations in board leadership that have confounded these theoretical expectations. One notable innovation is the executive board chair, a corporate governance hybrid responsible for both oversight and strategic decision-making, challenging agency theory's prescription that the two activities remain separate. In this study, we argue that an executive board chair position can resolve the trade-off between independent oversight and involvement in strategy and therefore generate a performance advantage. We also predict that, owing to the blurring of lines between the CEO and board chair roles that the executive board chair position creates, the relationship will be stronger the greater the need to monitor and control the CEO but weaker when organizational complexity and board leadership demands are greater. Analysis of S&P 1500 firms from 2003 to 2017 provides general support for our arguments.
RESUMEN
BACKGROUNDEarly antiretroviral therapy initiation (ARTi) in HIV-1 restricts reservoir size and diversity while preserving immune function, potentially improving opportunities for immunotherapeutic cure strategies. For antibody-based cure approaches, the development of autologous neutralizing antibodies (anAbs) after acute/early ARTi is relevant but is poorly understood.METHODSWe characterized antibody responses in a cohort of 23 participants following ARTi in acute HIV (<60 days after acquisition) and early HIV (60-128 days after acquisition).RESULTSPlasma virus sequences at the time of ARTi revealed evidence of escape from anAbs after early, but not acute, ARTi. HIV-1 envelopes representing the transmitted/founder virus(es) (acute ARTi) or escape variants (early ARTi) were tested for sensitivity to longitudinal plasma IgG. After acute ARTi, no anAb responses developed over months to years of suppressive ART. In 2 of the 3 acute ARTi participants who experienced viremia after ARTi, however, anAbs arose shortly thereafter. After early ARTi, anAbs targeting those early variants developed between 12 and 42 weeks of ART and continued to increase in breadth and potency thereafter.CONCLUSIONResults indicate a threshold of virus replication (~60 days) required to induce anAbs, after which they continue to expand on suppressive ART to better target the range of reservoir variants.TRIAL REGISTRATIONClinicalTrials.gov NCT02656511.FUNDINGNIH grants U01AI169767, R01AI162646, UM1AI164570, UM1AI164560, U19AI096109, K23GM112526, T32AI118684, P30AI045008, P30AI027763, R24AI067039; Gilead Sciences grant INUS2361354; Viiv Healthcare grant A126326.