Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 160(6): 1061-71, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25728668

RESUMEN

Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial surface receptor that triggers intracellular protein tyrosine phosphorylation. Recent genome-wide association studies have shown that a rare R47H mutation of TREM2 correlates with a substantial increase in the risk of developing Alzheimer's disease (AD). To address the basis for this genetic association, we studied TREM2 deficiency in the 5XFAD mouse model of AD. We found that TREM2 deficiency and haploinsufficiency augment ß-amyloid (Aß) accumulation due to a dysfunctional response of microglia, which fail to cluster around Aß plaques and become apoptotic. We further demonstrate that TREM2 senses a broad array of anionic and zwitterionic lipids known to associate with fibrillar Aß in lipid membranes and to be exposed on the surface of damaged neurons. Remarkably, the R47H mutation impairs TREM2 detection of lipid ligands. Thus, TREM2 detects damage-associated lipid patterns associated with neurodegeneration, sustaining the microglial response to Aß accumulation.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Microglía/metabolismo , Receptores Inmunológicos/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Supervivencia Celular , Modelos Animales de Enfermedad , Humanos , Glicoproteínas de Membrana/genética , Ratones , Microglía/citología , Mutación , Receptores Inmunológicos/genética
2.
J Am Soc Nephrol ; 27(11): 3285-3290, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27036737

RESUMEN

In glomerular disease, podocyte injury results in a dramatic change in cell morphology known as foot process effacement. Remodeling of the actin cytoskeleton through the activity of small GTPases was identified as a key mechanism in effacement, with increased membrane activity and motility in vitro However, whether podocytes are stationary or actively moving cells in vivo remains debated. Using intravital and kidney slice two-photon imaging of the three-dimensional structure of mouse podocytes, we found that uninjured podocytes remained nonmotile and maintained a canopy-shaped structure over time. On expression of constitutively active Rac1, however, podocytes changed shape by retracting processes and clearly exhibited domains of increased membrane activity. Constitutive activation of Rac1 also led to podocyte detachment from the glomerular basement membrane, and we detected detached podocytes crawling on the surface of the tubular epithelium and occasionally, in contact with peritubular capillaries. Podocyte membrane activity also increased in the inflammatory environment of immune complex-mediated GN. Our results provide evidence that podocytes transition from a static to a dynamic state in vivo, shedding new light on mechanisms in foot process effacement.


Asunto(s)
Membrana Celular/fisiología , Podocitos/fisiología , Podocitos/ultraestructura , Animales , Microscopía Intravital , Riñón/citología , Ratones , Microscopía de Fluorescencia por Excitación Multifotónica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA