RESUMEN
Antibody-based immunotherapy is a promising strategy for targeting chemoresistant leukemic cells. However, classical antibody-based approaches are restricted to targeting lineage-specific cell surface antigens. By targeting intracellular antigens, a large number of other leukemia-associated targets would become accessible. In this study, we evaluated a novel T-cell bispecific (TCB) antibody, generated by using CrossMAb and knob-into-holes technology, containing a bivalent T-cell receptor-like binding domain that recognizes the RMFPNAPYL peptide derived from the intracellular tumor antigen Wilms tumor protein (WT1) in the context of HLA-A*02. Binding to CD3ε recruits T cells irrespective of their T-cell receptor specificity. WT1-TCB elicited antibody-mediated T-cell cytotoxicity against AML cell lines in a WT1- and HLA-restricted manner. Specific lysis of primary acute myeloid leukemia (AML) cells was mediated in ex vivo long-term cocultures by using allogeneic (mean ± standard error of the mean [SEM] specific lysis, 67 ± 6% after 13-14 days; n = 18) or autologous, patient-derived T cells (mean ± SEM specific lysis, 54 ± 12% after 11-14 days; n = 8). WT1-TCB-treated T cells exhibited higher cytotoxicity against primary AML cells than an HLA-A*02 RMF-specific T-cell clone. Combining WT1-TCB with the immunomodulatory drug lenalidomide further enhanced antibody-mediated T-cell cytotoxicity against primary AML cells (mean ± SEM specific lysis on days 3-4, 45.4 ± 9.0% vs 70.8 ± 8.3%; P = .015; n = 9-10). In vivo, WT1-TCB-treated humanized mice bearing SKM-1 tumors exhibited a significant and dose-dependent reduction in tumor growth. In summary, we show that WT1-TCB facilitates potent in vitro, ex vivo, and in vivo killing of AML cell lines and primary AML cells; these results led to the initiation of a phase 1 trial in patients with relapsed/refractory AML (#NCT04580121).
Asunto(s)
Anticuerpos Biespecíficos/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Péptidos/uso terapéutico , Proteínas WT1/inmunología , Animales , Anticuerpos Biespecíficos/farmacología , Antineoplásicos Inmunológicos/farmacología , Línea Celular Tumoral , Antígeno HLA-A2/inmunología , Humanos , Leucemia Mieloide Aguda/inmunología , Ratones , Péptidos/farmacología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología , Células Tumorales CultivadasRESUMEN
The CD33-targeting bispecific T-cell engager (BiTE) AMG 330 proved to be highly efficient in mediating cytolysis of acute myeloid leukemia (AML) cells in vitro and in mouse models. Yet, T-cell activation is correlated with upregulation of programmed cell death-ligand 1 (PD-L1) and other inhibitory checkpoints on AML cells that confer adaptive immune resistance. PD-1 and PD-L1 blocking agents may counteract T-cell dysfunction, however, at the expense of broadly distributed immune-related adverse events (irAEs). We developed a bifunctional checkpoint inhibitory T cell-engaging (CiTE) antibody that combines T-cell redirection to CD33 on AML cells with locally restricted immune checkpoint blockade. This is accomplished by fusing the extracellular domain of PD-1 (PD-1ex), which naturally holds a low affinity to PD-L1, to an αCD3.αCD33 BiTE-like scaffold. By a synergistic effect of checkpoint blockade and avidity-dependent binding, the PD-1ex attachment increases T-cell activation (3.3-fold elevation of interferon-γ) and leads to efficient and highly selective cytotoxicity against CD33+PD-L1+ cell lines (50% effective concentration = 2.3-26.9 pM) as well as patient-derived AML cells (n = 8). In a murine xenograft model, the CiTE induces complete AML eradication without initial signs of irAEs as measured by body weight loss. We conclude that our molecule preferentially targets AML cells, whereas high-affinity blockers, such as clinically approved anticancer agents, also address PD-L1+ non-AML cells. By combining the high efficacy of T-cell engagers with immune checkpoint blockade in a single molecule, we expect to minimize irAEs associated with the systemic application of immune checkpoint inhibitors and suggest high therapeutic potential, particularly for patients with relapsed/ refractory AML.
Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Complejo CD3 , Leucemia Mieloide Aguda , Receptor de Muerte Celular Programada 1 , Proteínas Recombinantes de Fusión , Lectina 3 Similar a Ig de Unión al Ácido Siálico , Anticuerpos de Cadena Única , Animales , Línea Celular Tumoral , Células HEK293 , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos NOD , Proteínas de Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/uso terapéutico , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/farmacología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Antibody-based immunotherapy represents a promising strategy to target and eliminate chemoresistant leukemic cells. Here, we evaluated the CD33/CD3-bispecific T cell engaging (BiTE) antibody (AMG 330) for its suitability as a therapeutic agent in acute myeloid leukemia (AML). We first assessed CD33 expression levels by flow cytometry and found expression in >99% of patient samples (n = 621). CD33 was highest expressed in AMLs with NPM1 mutations (P < .001) and lower in AMLs with complex karyotypes and t(8;21) translocations (P < .001). Furthermore, leukemic stem cells within the CD34(+)/CD38(-) compartment displayed CD33 at higher levels than healthy donor stem cells (P = .047). In MS-5 feeder cell-based long-term cultures that supported the growth of primary AML blasts for up to 36 days, AMG 330 efficiently recruited and expanded residual CD3(+)/CD45RA(-)/CCR7(+) memory T cells within the patient sample. Even at low effector to target ratios, the recruited T cells lysed autologous blasts completely in the majority of samples and substantially in the remaining samples in a time-dependent manner. This study provides the first correlation of CD33 expression levels with AML genotype in a comprehensive analysis of adult patients. Targeting CD33 ex vivo using AMG 330 in primary AML samples led to T cell recruitment and expansion and remarkable antibody-mediated cytotoxicity, suggesting efficient therapeutic potential in vivo.
Asunto(s)
Anticuerpos Biespecíficos/inmunología , Inmunoterapia/métodos , Leucemia Mieloide Aguda/inmunología , Lectina 3 Similar a Ig de Unión al Ácido Siálico/metabolismo , Linfocitos T/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Biespecíficos/uso terapéutico , Técnicas de Cultivo de Célula , Técnicas de Cocultivo , Femenino , Citometría de Flujo , Genotipo , Humanos , Cariotipificación , Leucemia Mieloide Aguda/terapia , Masculino , Persona de Mediana Edad , Nucleofosmina , Factores de TiempoRESUMEN
Immune checkpoint molecules are highly relevant as potential prognostic markers and therapeutic targets in malignant diseases. HVEM belongs to the TNF receptor family and provides stimulatory as well as inhibitory signals depending on the ligand. Abnormal HVEM expression has been described in various malignancies, but the role in AML is unknown. Here we report extensive data on HVEM surface protein expression analyzed by flow cytometry on bone marrow leukemic cells of 169 AML patients at diagnosis. An independent cohort of 512 AML patients was analyzed for HVEM mRNA expression in bone marrow samples by Affymetrix microarrays. Consistently for both cohorts and methods, we show that HVEM was differentially expressed and that expression levels were associated with defined genetic markers. HVEM expression was lower in cases with FLT3-ITD (p = 0.001, p < 0.001), with mutations in NPM1 (p = 0.001, p < 0.001) or with the combination of NPM1 mutation and FLT3 wild type (p = 0.049, p = 0.050), while a biallelic mutation in CEBPA correlated positively with higher HVEM expression (p = 0.015, p < 0.001). In a differential gene expression analysis, we found 13 genes including HOXA9, MEIS1 and MN1 that were closely associated with HVEM expression. Besides, four gene sets closely linked to immunity were enriched in HVEM (high) samples. Finally, high expression of HVEM was associated with a trend toward longer relapse-free survival. The results of this study provide new information on the potential significance of HVEM in AML.
Asunto(s)
Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Leucemia Mieloide Aguda/genética , Miembro 14 de Receptores del Factor de Necrosis Tumoral/genética , Adulto , Anciano , Anciano de 80 o más Años , Médula Ósea/metabolismo , Supervivencia sin Enfermedad , Femenino , Citometría de Flujo , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/mortalidad , Masculino , Persona de Mediana Edad , Nucleofosmina , ARN/genética , Miembro 14 de Receptores del Factor de Necrosis Tumoral/inmunologíaRESUMEN
BACKGROUND: Immunotherapy of acute myeloid leukemia has experienced considerable advances, however novel target antigens continue to be sought after. To this end, unbiased approaches for surface protein detection are limited and integration with other data types, such as gene expression and somatic mutational burden, are poorly utilized. The Cell Surface Capture technology provides an unbiased, discovery-driven approach to map the surface proteins on cells of interest. Yet, direct utilization of primary patient samples has been limited by the considerable number of viable cells needed. METHODS: Here, we optimized the Cell Surface Capture protocol to enable direct interrogation of primary patient samples and applied our optimized protocol to a set of samples from patients with acute myeloid leukemia (AML) to generate the AML surfaceome. We then further curated this AML surfaceome to exclude antigens expressed on healthy tissues and integrated mutational burden data from hematologic cancers to further enrich for targets which are likely to be essential to leukemia biology. Finally, we validated our findings in a separate cohort of AML patient samples. RESULTS: Our protocol modifications allowed us to double the yield in identified proteins and increased the specificity from 54 to 80.4% compared to previous approaches. Using primary AML patient samples, we were able to identify a total of 621 surface proteins comprising the AML surfaceome. We integrated this data with gene expression and mutational burden data to curate a set of robust putative target antigens. Seventy-six proteins were selected as potential candidates for further investigation of which we validated the most promising novel candidate markers, and identified CD148, ITGA4 and Integrin beta-7 as promising targets in AML. Integrin beta-7 showed the most promising combination of expression in patient AML samples, and low or absent expression on healthy hematopoietic tissue. CONCLUSION: Taken together, we demonstrate the feasibility of a highly optimized surfaceome detection method to interrogate the entire AML surfaceome directly from primary patient samples and integrate this data with gene expression and mutational burden data to achieve a robust, multiomic target identification platform. This approach has the potential to accelerate the unbiased target identification for immunotherapy of AML.
RESUMEN
Despite advances in the treatment of acute myeloid leukemia (AML), novel therapies are needed to induce deeper and more durable clinical response. Bispecific T-cell Engager (BiTE) molecules, which redirect patient T cells to lyse tumor cells, are a clinically validated modality for hematologic malignancies. Due to broad AML expression and limited normal tissue expression, fms-related tyrosine kinase 3 (FLT3) is proposed to be an optimal BiTE molecule target. Expression profiling of FLT3 was performed in primary AML patient samples and normal hematopoietic cells and nonhematopoietic tissues. Two novel FLT3 BiTE molecules, one with a half-life extending (HLE) Fc moiety and one without, were assessed for T-cell-dependent cellular cytotoxicity (TDCC) of FLT3-positive cell lines in vitro, in vivo, and ex vivo FLT3 protein was detected on the surface of most primary AML bulk and leukemic stem cells but only a fraction of normal hematopoietic stem and progenitor cells. FLT3 protein detected in nonhematopoietic cells was cytoplasmic. FLT3 BiTE molecules induced TDCC of FLT3-positive cells in vitro, reduced tumor growth and increased survival in AML mouse models in vivo Both molecules exhibited reproducible pharmacokinetic and pharmacodynamic profiles in cynomolgus monkeys in vivo, including elimination of FLT3-positive cells in blood and bone marrow. In ex vivo cultures of primary AML samples, patient T cells induced TDCC of FLT3-positive target cells. Combination with PD-1 blockade increased BiTE activity. These data support the clinical development of an FLT3 targeting BiTE molecule for the treatment of AML.
Asunto(s)
Anticuerpos Biespecíficos/administración & dosificación , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Leucemia Mieloide Aguda/tratamiento farmacológico , Tirosina Quinasa 3 Similar a fms/metabolismo , Animales , Anticuerpos Biespecíficos/farmacología , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Citotoxicidad Inmunológica , Sinergismo Farmacológico , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Células K562 , Leucemia Mieloide Aguda/metabolismo , Macaca fascicularis , Ratones , Resultado del Tratamiento , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidoresRESUMEN
Immune checkpoint inhibition has been shown to successfully reactivate endogenous T cell responses directed against tumor-associated antigens, resulting in significantly prolonged overall survival in patients with various tumor entities. For malignancies with low endogenous immune responses, this approach has not shown a clear clinical benefit so far. Therapeutic vaccination, particularly dendritic cell (DC) vaccination, is a strategy to induce T cell responses. Interaction of DCs and T cells is dependent on receptor-ligand interactions of various immune checkpoints. In this study, we analyzed the influence of blocking antibodies targeting programmed cell death protein 1 (PD-1), HVEM, CD244, TIM-3, and lymphocyte activation gene 3 (LAG-3) on the proliferation and cytokine secretion of T cells after stimulation with autologous TLR-matured DCs. In this context, we found that LAG-3 blockade resulted in superior T cell activation compared to inhibition of other pathways, including PD-1/PD-L1. This result was consistent across different methods to measure T cell stimulation (proliferation, IFN-γ secretion), various stimulatory antigens (viral and bacterial peptide pool, specific viral antigen, specific tumor antigen), and seen for both CD4+ and CD8+ T cells. Only under conditions with a weak antigenic stimulus, particularly when combining antigen presentation by peripheral blood mononuclear cells with low concentrations of peptides, we observed the highest T cell stimulation with dual blockade of LAG-3 and PD-1 blockade. We conclude that priming of novel immune responses can be strongly enhanced by blockade of LAG-3 or dual blockade of LAG-3 and PD-1, depending on the strength of the antigenic stimulus.
Asunto(s)
Anticuerpos Bloqueadores/farmacología , Células Presentadoras de Antígenos/inmunología , Antígenos CD/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Humanos , Interferón gamma/metabolismo , Activación de Linfocitos , Receptores Toll-Like/metabolismo , Proteína del Gen 3 de Activación de LinfocitosRESUMEN
A number of agents designed for immunotherapy of Acute Myeloid Leukemia (AML) are in preclinical and early clinical development. Most of them target a single antigen on the surface of AML cells. Here we describe the development and key biological properties of a tri-specific agent, the dual-targeting triplebody SPM-2, with binding sites for target antigens CD33 and CD123, and for CD16 to engage NK cells as cytolytic effectors. Primary blasts of nearly all AML patients carry at least one of these target antigens and the pair is particularly promising for the elimination of blasts and leukemia stem cells (LSCs) from a majority of AML patients by dual-targeting agents. The cytolytic activity of NK cells mediated by SPM-2 was analyzed in vitro for primary leukemic cells from 29 patients with a broad range of AML-subtypes. Blasts from all 29 patients, including patients with genomic alterations associated with an unfavorable genetic subtype, were lysed at nanomolar concentrations of SPM-2. Maximum susceptibility was observed for cells with a combined density of CD33 and CD123 above 10,000 copies/cell. Cell populations enriched for AML-LSCs (CD34pos and CD34pos CD38neg cells) from 2 AML patients carried an increased combined antigen density and were lysed at correspondingly lower concentrations of SPM-2 than unsorted blasts. These initial findings raise the expectation that SPM-2 may also be capable of eliminating AML-LSCs and thus of prolonging survival. In the future, patients with a broad range of AML subtypes may benefit from treatment with SPM-2.
RESUMEN
The advent of new immunotherapeutic agents in clinical practice has revolutionized cancer treatment in the past decade, both in oncology and hematology. The transfer of the immunotherapeutic concepts to the treatment of acute myeloid leukemia (AML) is hampered by various characteristics of the disease, including non-leukemia-restricted target antigen expression profile, low endogenous immune responses, and intrinsic resistance mechanisms of the leukemic blasts against immune responses. However, considerable progress has been made in this field in the past few years.Within this manuscript, we review the recent developments and the current status of the five currently most prominent immunotherapeutic concepts: (1) antibody-drug conjugates, (2) T cell-recruiting antibody constructs, (3) chimeric antigen receptor (CAR) T cells, (4) checkpoint inhibitors, and (5) dendritic cell vaccination. We focus on the clinical data that has been published so far, both for newly diagnosed and refractory/relapsed AML, but omitting immunotherapeutic concepts in conjunction with hematopoietic stem cell transplantation. Besides, we have included important clinical trials that are currently running or have recently been completed but are still lacking full publication of their results.While each of the concepts has its particular merits and inherent problems, the field of immunotherapy of AML seems to have taken some significant steps forward. Results of currently running trials will reveal the direction of further development including approaches combining two or more of these concepts.
Asunto(s)
Inmunoterapia/métodos , Leucemia Mieloide Aguda/inmunología , Humanos , Leucemia Mieloide Aguda/patologíaRESUMEN
CD47, expressed on a variety of tumor cells, confers immune resistance by delivering an inhibitory "don't eat me" signal to phagocytic cells via its myeloid-specific receptor SIRPα. Recent studies have shown that blocking the CD47-SIRPα axis with CD47-directed antibodies or antibody-derivatives enhances phagocytosis and increases antitumor immune effects. However, CD47 expression on healthy cells creates an antigen sink and potential sites of toxicity, limiting the efficacy of CD47-directed therapies. In this study, we first characterized CD47 expression in Acute Myeloid Leukemia (AML) patients (n = 213) and found that CD47 is highly expressed on both AML bulk and stem cells irrespective of the disease state. Furthermore, to inhibit the CD47-SIRPα signaling pathway at the tumor site, we developed a so-called local inhibitory checkpoint monoclonal antibody (licMAB) by grafting the endogenous SIRPα domain to the N-terminus of the light chain of an antibody targeting CD33, a surface antigen expressed in AML. LicMABs selectively bind CD33-expressing cells even in the presence of a large CD33-negative CD47-positive antigen sink, stimulate phagocytosis of AML cells and eliminate AML cell lines and primary, patient-derived AML cells. Our findings qualify licMABs as a promising therapeutic approach to confine the benefit of disrupting the CD47-SIRPα axis to tumor antigen-expressing cells.
Asunto(s)
Anticuerpos Bloqueadores/farmacología , Antígenos de Diferenciación/farmacología , Inmunoterapia/métodos , Leucemia Mieloide Aguda/inmunología , Fagocitosis/efectos de los fármacos , Lectina 3 Similar a Ig de Unión al Ácido Siálico/inmunología , Anticuerpos Monoclonales/farmacología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Antígeno CD47/biosíntesis , Antígeno CD47/inmunología , Separación Celular , Citometría de Flujo , Humanos , Microscopía Confocal , Receptores InmunológicosRESUMEN
Antibody-based immunotherapy represents a promising strategy to eliminate chemorefractory leukemic cells in acute myeloid leukemia (AML). In this study, we evaluated a novel Fc-engineered antibody against CD157 (MEN1112) for its suitability as immunotherapy in AML. CD157 was expressed in 97% of primary AML patient samples. A significant, albeit lower expression level of CD157 was observed within the compartment of leukemia-initiating cells, which are supposed to be the major source of relapse. In healthy donor bone marrow, CD157 was expressed on CD34+ cells. In ex vivo assays, MEN1112 triggered natural killer (NK) cell-mediated cytotoxicity against AML cell lines and primary AML cells. Compared to its parental analogue, the Fc-engineered antibody exhibited higher antibody dependent cellular cytotoxicity responses. Using NK cells from AML patients, we observed heterogeneous MEN1112-mediated cytotoxicity against AML cells, most likely due to well-documented defects in AML-NK cells and corresponding inter-patient variations in NK cell function. Cytotoxicity could not be correlated to the time after completion of chemotherapy. In summary, we could demonstrate that CD157 is strongly expressed in AML. MEN1112 is a promising antibody construct that showed high cytotoxicity against AML cells and warrants further clinical testing. Due to variability in NK-cell function of AML patients, the time of application during the course of the disease as well as combinatorial strategies might influence treatment results.
Asunto(s)
ADP-Ribosil Ciclasa/antagonistas & inhibidores , Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Terapia Molecular Dirigida , Proteínas Recombinantes de Fusión/uso terapéutico , ADP-Ribosil Ciclasa/genética , ADP-Ribosil Ciclasa/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Citotoxicidad Celular Dependiente de Anticuerpos , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores de Tumor , Línea Celular Tumoral , Femenino , Citometría de Flujo , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Expresión Génica , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Humanos , Células Asesinas Naturales/inmunología , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/inmunología , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
Despite longstanding efforts in basic research and clinical studies, the prognosis for patients with acute myeloid leukemia (AML) remains poor. About half of the patients are not medically fit for intensive induction therapy to induce a complete remission and are treated with palliative treatment concepts. The patients medically fit for intensive induction therapy have a high complete remission rate but the majority suffers from relapse due to chemo-refractory leukemic cells. Allogeneic stem cell transplantation as post-remission therapy can significantly reduce the likelihood of relapse, but it is associated with a high rate of morbidity and mortality. Novel therapeutic concepts are therefore urgently sought after. During recent years, the focus has shifted towards the development of novel immunotherapeutic strategies. Some of the most promising are drug-conjugated monoclonal antibodies, T-cell engaging antibody constructs, adoptive transfer with chimeric antigen receptor (CAR) T cells, and dendritic cell vaccination. Here, we review recent progress in these four fields and speculate about the optimal time points during the course of AML treatment for their application.
Asunto(s)
Inmunoterapia , Leucemia Mieloide Aguda/terapia , Animales , Anticuerpos/inmunología , Humanos , Leucemia Mieloide Aguda/inmunología , Pronóstico , Recurrencia , Linfocitos T/inmunologíaRESUMEN
The bispecific T cell engager blinatumomab has shown encouraging clinical activity in B-precursor acute lymphoblastic leukemia (ALL). However, about half of relapsed/refractory patients do not respond to therapy. Here, we present the case of a 32-year-old male patient with refractory B-precursor ALL who was resistant to treatment with blinatumomab. Bone marrow immunohistochemistry revealed T cell infiltrates and an increase in programmed death-ligand 1 (PD-L1)-positive ALL cells as a potential immune escape mechanism. We were able to recapitulate the clinical observation in vitro by showing that blinatumomab was not able to mediate cytotoxicity of CD19-positive ALL cells using autologous T cells. In contrast, the addition of healthy donor T cells led to lysis of ALL cells.These results strongly encourage further systematic evaluation of checkpoint molecules in cases of blinatumomab treatment failure and might highlight a possible mechanism to overcome resistance to this otherwise highly effective treatment.
Asunto(s)
Anticuerpos Biespecíficos/uso terapéutico , Antígeno B7-H1/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Adulto , Anticuerpos Biespecíficos/inmunología , Antígenos CD19/inmunología , Antígeno B7-H1/inmunología , Complejo CD3/inmunología , Resistencia a Antineoplásicos/inmunología , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras B/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismoRESUMEN
Acute myeloid leukemia (AML) is a clinically and molecularly heterogeneous disease with poor outcome. Adequate model systems are required for preclinical studies to improve understanding of AML biology and to develop novel, rational treatment approaches. Xenografts in immunodeficient mice allow performing functional studies on patient-derived AML cells. We have established an improved model system that integrates serial retransplantation of patient-derived xenograft (PDX) cells in mice, genetic manipulation by lentiviral transduction, and essential quality controls by immunophenotyping and targeted resequencing of driver genes. 17/29 samples showed primary engraftment, 10/17 samples could be retransplanted and some of them allowed virtually indefinite serial transplantation. 5/6 samples were successfully transduced using lentiviruses. Neither serial transplantation nor genetic engineering markedly altered sample characteristics analyzed. Transgene expression was stable in PDX AML cells. Example given, recombinant luciferase enabled bioluminescence in vivo imaging and highly sensitive and reliable disease monitoring; imaging visualized minimal disease at 1 PDX cell in 10000 mouse bone marrow cells and facilitated quantifying leukemia initiating cells. We conclude that serial expansion, genetic engineering and imaging represent valuable tools to improve the individualized xenograft mouse model of AML. Prospectively, these advancements enable repetitive, clinically relevant studies on AML biology and preclinical treatment trials on genetically defined and heterogeneous subgroups.