Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
BMC Vet Res ; 18(1): 334, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064401

RESUMEN

BACKGROUND: Alpha-chloralose (AC) is a compound known to be toxic to various animal species and humans. In 2018 and 2019 an increase in suspected cases of AC poisoning in cats related to the use of AC as a rodenticide was reported to national veterinary and chemical authorities in Finland, Norway and Sweden by veterinarians working in clinical practices in respective country. The aims of this study were to prospectively investigate AC poisoning in cats, including possible secondary poisoning by consuming poisoned mice, and to study metabolism and excretion of AC in cats through analysis of feline urine. METHODS: Data on signalment, history and clinical findings were prospectively collected in Finland, Norway and Sweden from July 2020 until March of 2021 using a questionnaire which the attending veterinarian completed and submitted together with a serum sample collected from suspected feline cases of AC-poisoning. The diagnosis was confirmed by quantification of AC in serum samples. Content of AC was studied in four feline urine samples, including screening for AC metabolites by UHPLC-HRMS/MS. Bait intake and amount of AC consumed by mice was observed in wild mice during an extermination of a rodent infestation. RESULTS: In total, 59 of 70 collected questionnaires and accompanying serum samples were included, with 127 to 70 100 ng/mL AC detected in the serum. Several tentative AC-metabolites were detected in the analysed feline urine samples, including dechlorinated and oxidated AC, several sulfate conjugates, and one glucuronic acid conjugate of AC. The calculated amount of AC ingested by each mouse was 33 to 106 mg with a mean of 61 mg. CONCLUSIONS: Clinical recognition of symptoms of AC poisoning in otherwise healthy cats roaming free outdoors and known to be rodent hunters strongly correlated with confirmation of the diagnosis through toxicological analyses of serum samples. The collected feline exposure data regarding AC show together with the calculation of the intake of bait and subsequent AC concentrations in mice that secondary poisoning from ingestion of mice is possible. The results of the screening for AC metabolites in feline urine confirm that cats excrete AC both unchanged and metabolized through dechlorination, oxidation, glucuronidation and sulfatation pathways.


Asunto(s)
Cloralosa , Animales , Gatos , Finlandia/epidemiología , Humanos , Ratones , Noruega/epidemiología , Países Escandinavos y Nórdicos , Suecia/epidemiología
2.
Chem Res Toxicol ; 34(8): 1910-1925, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34319092

RESUMEN

Ciguatoxins (CTX) are potent marine neurotoxins, which can bioaccumulate in seafood, causing a severe and prevalent human illness known as ciguatera poisoning (CP). Despite the worldwide impact of ciguatera, effective disease management is hindered by a lack of knowledge regarding the movement and biotransformation of CTX congeners in marine food webs, particularly in the Caribbean and Western Atlantic. In this study we investigated the hepatic biotransformation of C-CTX across several fish and mammalian species through a series of in vitro metabolism assays focused on phase I (CYP P450; functionalization) and phase II (UGT; conjugation) reactions. Using liquid chromatography high-resolution mass spectrometry to explore potential C-CTX metabolites, we observed two glucuronide products of C-CTX-1/-2 and provided additional evidence from high-resolution tandem mass spectrometry to support their identification. Chemical reduction experiments confirmed that the metabolites were comprised of four distinct glucuronide products with the sugar attached at two separate sites on C-CTX-1/-2 and excluded the C-56 hydroxyl group as the conjugation site. Glucuronidation is a novel biotransformation pathway not yet reported for CTX or other related polyether phycotoxins, yet its occurrence across all fish species tested suggests that it could be a prevalent and important detoxification mechanism in marine organisms. The absence of glucuronidation observed in this study for both rat and human microsomes suggests that alternate biotransformation pathways may be dominant in higher vertebrates.


Asunto(s)
Ciguatoxinas/metabolismo , Peces/metabolismo , Glucurónidos/metabolismo , Animales , Biotransformación , Región del Caribe , Intoxicación por Ciguatera/etiología , Intoxicación por Ciguatera/metabolismo , Cadena Alimentaria , Humanos , Microsomas Hepáticos/metabolismo , Ratas Wistar , Alimentos Marinos/envenenamiento
3.
Mol Cell Proteomics ; 17(12): 2309-2323, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30150368

RESUMEN

N-terminal acetylation (Nt-acetylation) is a highly abundant protein modification in eukaryotes and impacts a wide range of cellular processes, including protein quality control and stress tolerance. Despite its prevalence, the mechanisms regulating Nt-acetylation are still nebulous. Here, we present the first global study of Nt-acetylation in yeast cells as they progress to stationary phase in response to nutrient starvation. Surprisingly, we found that yeast cells maintain their global Nt-acetylation levels upon nutrient depletion, despite a marked decrease in acetyl-CoA levels. We further observed two distinct sets of protein N termini that display differential and opposing Nt-acetylation behavior upon nutrient starvation, indicating a dynamic process. The first protein cluster was enriched for annotated N termini showing increased Nt-acetylation in stationary phase compared with exponential growth phase. The second protein cluster was conversely enriched for alternative nonannotated N termini (i.e. N termini indicative of shorter N-terminal proteoforms) and, like histones, showed reduced acetylation levels in stationary phase when acetyl-CoA levels were low. Notably, the degree of Nt-acetylation of Pcl8, a negative regulator of glycogen biosynthesis and two components of the pre-ribosome complex (Rsa3 and Rpl7a) increased during starvation. Moreover, the steady-state levels of these proteins were regulated both by starvation and NatA activity. In summary, this study represents the first comprehensive analysis of metabolic regulation of Nt-acetylation and reveals that specific, rather than global, Nt-acetylation events are subject to metabolic regulation.


Asunto(s)
Acetilcoenzima A/metabolismo , Saccharomyces cerevisiae/enzimología , Acetilación , Acetiltransferasas/metabolismo , Análisis de Varianza , Células Cultivadas , Distribución de Chi-Cuadrado , Ciclinas/metabolismo , Histonas/metabolismo , Acetiltransferasas N-Terminal/metabolismo , Proteoma/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometría de Masas en Tándem
4.
Mar Drugs ; 18(4)2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244322

RESUMEN

Ciguatera poisoning is linked to the ingestion of seafood that is contaminated with ciguatoxins (CTXs). The structural variability of these polyether toxins in nature remains poorly understood due to the low concentrations present even in highly toxic fish, which makes isolation and chemical characterization difficult. We studied the mass spectrometric fragmentation of Caribbean CTXs, i.e., the epimers C-CTX-1 and -2 (1 and 2), using a sensitive UHPLC-HRMS/MS approach in order to identify product ions of diagnostic value. We found that the fragmentation of the ladder-frame backbone follows a characteristic pattern and propose a generalized nomenclature for the ions formed. These data were applied to the structural characterization of a pair of so far poorly characterized isomers, C-CTX-3 and -4 (3 and 4), which we found to be reduced at C-56 relative to 1 and 2. Furthermore, we tested and applied reduction and oxidation reactions, monitored by LC-HRMS, in order to confirm the structures of 3 and 4. Reduction of 1 and 2 with NaBH4 afforded 3 and 4, thereby unambiguously confirming the identities of 3 and 4. In summary, this work provides a foundation for mass spectrometry-based characterization of new C-CTXs, including a suite of simple chemical reactions to assist the examination of structural modifications.


Asunto(s)
Intoxicación por Ciguatera/prevención & control , Ciguatoxinas/aislamiento & purificación , Peces , Alimentos Marinos/análisis , Animales , Región del Caribe , Cromatografía Líquida de Alta Presión/métodos , Ciguatoxinas/química , Conformación Molecular , Espectrometría de Masas en Tándem/métodos
5.
Environ Toxicol Chem ; 43(6): 1332-1338, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38651991

RESUMEN

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone) is a widespread contaminant of emerging concern resulting from oxidation of 6PPD, which is an antidegradant substance added to tires. The recent identification of 6PPD-quinone as the cause of acute mortality in coho salmon has quickly motivated studies on 6PPD-quinone toxicity to other species. Subsequent findings have shown that 6PPD-quinone toxicity is highly species specific. Closely related species can differ widely in response to 6PPD-quinone from extremely sensitive to tolerant. Hence toxicity testing is currently the only way to establish whether a species exhibits 6PPD-quinone toxicity. We investigated the acute toxicity of 6PPD-quinone in pink salmon alevins (sac fry). This species has is the only Pacific salmon that so far has not been tested for 6PPD-quinone sensitivity. Fish were exposed in static water in eight treatments with initial concentrations ranging from 0.1 to 12.8 µg/L. Fish were observed for 48 h, and changes in concentrations of 6PPD-quinone were monitored throughout the experiment. No mortalities or substantial changes in behavior were recorded. Environ Toxicol Chem 2024;43:1332-1338. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Fenilendiaminas , Salmón , Animales , Fenilendiaminas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Goma/toxicidad , Pruebas de Toxicidad Aguda
6.
J Proteome Res ; 12(7): 3362-71, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23725413

RESUMEN

A cornerstone of mass spectrometry based proteomics is to relate with high statistical significance experimentally obtained tandem mass spectrometry (MS/MS) data to peptide sequences from a protein database. Most sequence specific fragment ions in MS/MS spectra are represented by a subset of complementary ion pairs. Here, we investigated the reliabilities of complementary ion pairs formed in CAD and CAD/ETD MS/MS and developed a reliability-based approach of intensification of ion signals of complementary pairs prior to database searching. In a large-scale proteomics experiment using high-resolution orbitrap mass spectrometry, an increase in the number of peptide identifications was obtained relative to the original CAD MS/MS spectra when intensified golden complementary (+18.6%) and CAD complementary pairs (+17.2%) were submitted to the Mascot search engine. This also exceeded the results obtained by deisotoping/deconvolution of CAD MS/MS spectra. A novel approach for extracting sequence-specific fragment ions of co-isolated peptides was developed based on the complementarity rules. This technique demonstrated an impressive gain of 42.4% more peptide identifications as compared with the use of the initial data set.


Asunto(s)
Iones/química , Espectrometría de Masas/métodos , Péptidos/aislamiento & purificación , Proteómica/métodos , Algoritmos , Bases de Datos de Proteínas , Humanos , Péptidos/química , Péptidos/clasificación , Programas Informáticos , Espectrometría de Masas en Tándem
7.
Toxicon X ; 19: 100168, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37483846

RESUMEN

Brevetoxins (BTX) are a group of marine neurotoxins produced by the harmful alga Karenia brevis. Numerous studies have shown that BTX are rapidly accumulated and metabolized in shellfish and mammals. However, there are only limited data on BTX metabolism in fish, despite growing evidence that fish serve as vectors for BTX transfer in marine food webs. In this study, we aimed to investigate the in vitro biotransformation of BTX-2, the major constituent of BTX profiles in K. brevis, in several species of northern Gulf of Mexico fish. Metabolism assays were performed using hepatic microsomes prepared in-house as well as commercially available human microsomes for comparison, focusing on phase I reactions mediated by cytochrome P450 monooxygenase (CYP) enzymes. Samples were analyzed by UHPLC-HRMS(/MS) to monitor BTX-2 depletion and characterize BTX metabolites based on MS/MS fragmentation pathways. Our results showed that both fish and human liver microsomes rapidly depleted BTX-2, resulting in a 72-99% reduction within 1 h of incubation. We observed the simultaneous production of 22 metabolites functionalized by reductions, oxidations, and other phase I reactions. We were able to identify the previously described congeners BTX-3 and BTX-B5, and tentatively identified BTX-9, 41,43-dihydro-BTX-2, several A-ring hydrolysis products, as well as several novel metabolites. Our results confirmed that fish are capable of similar BTX biotransformation reactions as reported for shellfish and mammals, but comparison of metabolite formation across the tested species suggested considerable interspecific variation in BTX-2 metabolism potentially leading to divergent BTX profiles. We additionally observed non-enzymatic formation of BTX-2 and BTX-3 glutathione conjugates. Collectively, these findings have important implications for determining the ecotoxicological fate of BTX in marine food webs.

8.
Anal Chem ; 84(15): 6638-45, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22799558

RESUMEN

With high-mass accuracy and consecutively obtained electron transfer dissociation (ETD) and higher-energy collisional dissociation (HCD) tandem mass spectrometry (MS/MS), reliable (≥97%) and sensitive fragment ions have been extracted for identification of specific amino acid residues in peptide sequences. The analytical benefit of these specific amino acid composition (AAC) ions is to restrict the database search space and provide identification of peptides with higher confidence and reduced false negative rates. The 6706 uniquely identified peptide sequences determined with a conservative Mascot score of >30 were used to characterize the AAC ions. The loss of amino acid side chains (small neutral losses, SNLs) from the charge reduced peptide radical cations was studied using ETD. Complementary AAC information from HCD spectra was provided by immonium ions. From the ETD/HCD mass spectra, 5162 and 6720 reliable SNLs and immonium ions were successfully extracted, respectively. Automated application of the AAC information during database searching resulted in an average 3.5-fold higher confidence level of peptide identification. In addition, 4% and 28% more peptides were identified above the significance level in a standard and extended search space, respectively.


Asunto(s)
Péptidos/análisis , Espectrometría de Masas en Tándem , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión , Bases de Datos Factuales , Transporte de Electrón , Células HeLa , Humanos , Tripsina/metabolismo
9.
Environ Toxicol Chem ; 41(12): 3041-3045, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36148925

RESUMEN

Recent identification of 6PPD-quinone as the chemical causing acute toxicity in coho salmon has led to substantial concern regarding the toxicity of this contaminant for other aquatic species. Environmental occurrence of 6PPD-quinone is probably high, because it is an oxidation product of a common tire rubber additive. Research on 6PPD-quinone toxicity in fish has revealed a rather unusual pattern, with closely related species exhibiting responses ranging from extreme sensitivity to no effect. Of 11 previously studied fish species, 6PPD-quinone was toxic to four. The species-specific toxicity of 6PPD-quinone complicates urgently needed environmental risk assessment. We investigated the acute toxicity of 6PPD-quinone in Atlantic salmon and brown trout alevins (sac fry). These species have previously not been tested for sensitivity to 6PPD-quinone. The fish were exposed in static conditions in eight treatments with initial concentrations ranging from 0.095 to 12.16 µg/L. Fish were observed for 48 h, and changes in concentrations of 6PPD-quinone were monitored throughout the experiment. No mortalities or substantial changes in behavior were recorded in either Atlantic salmon or brown trout. This provides an important first step in assessing effects of 6PPD-quinone on these economically and culturally highly important species. Environ Toxicol Chem 2022;41:3041-3045. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Salmo salar , Animales , Goma , Trucha/fisiología , Especificidad de la Especie , Quinonas
10.
Toxins (Basel) ; 14(6)2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35737060

RESUMEN

Ciguatera poisoning is a global health concern caused by the consumption of seafood containing ciguatoxins (CTXs). Detection of CTXs poses significant analytical challenges due to their low abundance even in highly toxic fish, the diverse and in-part unclarified structures of many CTX congeners, and the lack of reference standards. Selective detection of CTXs requires methods such as liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) or high-resolution MS (LC-HRMS). While HRMS data can provide greatly improved resolution, it is typically less sensitive than targeted LC-MS/MS and does not reliably comply with the FDA guidance level of 0.1 µg/kg CTXs in fish tissue that was established for Caribbean CTX-1 (C-CTX-1). In this study, we provide a new chemical derivatization approach employing a fast and simple one-pot derivatization with Girard's reagent T (GRT) that tags the C-56-ketone intermediate of the two equilibrating C-56 epimers of C-CTX-1 with a quaternary ammonium moiety. This derivatization improved the LC-MS/MS and LC-HRMS responses to C-CTX-1 by approximately 40- and 17-fold on average, respectively. These improvements in sensitivity to the GRT-derivative of C-CTX-1 are attributable to: the improved ionization efficiency caused by insertion of a quaternary ammonium ion; the absence of adduct-ions and water-loss peaks for the GRT derivative in the mass spectrometer, and; the prevention of on-column epimerization (at C-56 of C-CTX-1) by GRT derivatization, leading to much better chromatographic peak shapes. This C-CTX-1-GRT derivatization strategy mitigates many of the shortcomings of current LC-MS analyses for C-CTX-1 by improving instrument sensitivity, while at the same time adding selectivity due to the reactivity of GRT with ketones and aldehydes.


Asunto(s)
Compuestos de Amonio , Intoxicación por Ciguatera , Ciguatoxinas , Aminación , Animales , Región del Caribe , Cromatografía Liquida , Ciguatoxinas/análisis , Peces , Espectrometría de Masas en Tándem/métodos
11.
J Agric Food Chem ; 69(38): 11322-11335, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34533950

RESUMEN

Azaspiracids (AZAs) are a group of biotoxins produced by the marine dinoflagellates Azadinium and Amphidoma spp. that can accumulate in shellfish and cause food poisoning in humans. Of the 60 AZAs identified, levels of AZA1, AZA2, and AZA3 are regulated in shellfish as a food safety measure based on occurrence and toxicity. Information about the metabolism of AZAs in shellfish is limited. Therefore, a fraction of blue mussel hepatopancreas was made to study the metabolism of AZA1-3 in vitro. A range of AZA metabolites were detected by liquid chromatography-high-resolution tandem mass spectrometry analysis, most notably the novel 22α-hydroxymethylAZAs AZA65 and AZA66, which were also detected in naturally contaminated mussels. These appear to be the first intermediates in the metabolic conversion of AZA1 and AZA2 to their corresponding 22α-carboxyAZAs (AZA17 and AZA19). α-Hydroxylation at C-23 was also a prominent metabolic pathway, producing AZA8, AZA12, and AZA5 as major metabolites of AZA1-3, respectively, and AZA67 and AZA68 as minor metabolites via double-hydroxylation of AZA1 and AZA2, but only low levels of 3ß-hydroxylation were observed in this study. In vitro generation of algal toxin metabolites, such as AZA3, AZA5, AZA6, AZA8, AZA12, AZA17, AZA19, AZA65, and AZA66 that would otherwise have to be laboriously purified from shellfish, has the potential to be used for the production of standards for analytical and toxicological studies.


Asunto(s)
Mytilus edulis , Compuestos de Espiro , Animales , Humanos , Toxinas Marinas , Mariscos/análisis
12.
Microorganisms ; 8(9)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825526

RESUMEN

Cyclic di-adenosine monophosphate (c-di-AMP) has emerged as an important bacterial signaling molecule that functions both as an intracellular second messenger in bacterial cells and an extracellular ligand involved in bacteria-host cross-talk. In this study, we identify and characterize proteins involved in controlling the c-di-AMP concentration in the oral commensal and opportunistic pathogen Streptococcusmitis (S. mitis). We identified three known types of c-di-AMP turnover proteins in the genome of S. mitis CCUG31611: a CdaA-type diadenylate cyclase as well as GdpP-, and DhhP-type phosphodiesterases. Biochemical analyses of purified proteins demonstrated that CdaA synthesizes c-di-AMP from ATP whereas both phosphodiesterases can utilize c-di-AMP as well as the intermediary metabolite of c-di-AMP hydrolysis 5'-phosphadenylyl-adenosine (pApA) as substrate to generate AMP, albeit at different catalytic efficiency. Using deletion mutants of each of the genes encoding c-di-AMP turnover proteins, we show by high resolution MS/MS that the intracellular concentration of c-di-AMP is increased in deletion mutants of the phosphodiesterases and non-detectable in the cdaA-mutant. We also detected pApA in mutants of the DhhP-type phosphodiesterase. Low and high levels of c-di-AMP were associated with longer and shorter chains of S. mitis, respectively indicating a role in regulation of cell division. The deletion mutant of the DhhP-type phosphodiesterase displayed slow growth and reduced rate of glucose metabolism.

13.
Environ Sci Pollut Res Int ; 16(2): 191-205, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19132429

RESUMEN

BACKGROUND, AIMS, AND SCOPE: Since toxaphene (polychlorocamphene, polychloropinene, or strobane) mixtures were applied for massive insecticide use in the 1960s to replace the use of DDT, some of their congeners have been found at high latitudes far away from the usage areas. Especially polychlorinated bornanes have demonstrated dominating congeners transported by air up to the Arctic areas. Environmental fate modeling has been applied to monitor this phenomenon using parallel zones of atmosphere around the globe as interconnected environments. These zones, shown in many meteorological maps, however, may not be the best way to configure atmospheric transport in air trajectories. The latter could also be covered by connecting a chain of simple model boxes. We aim to study this alternative approach by modeling the trajectory chain using catchment boxes of our FATEMOD model. Polychlorobornanes analyzed in biota of the Barents Sea offered one case to study this modeling alternative, while toxaphene has been and partly still is used massively at southern East Europe and around rivers flowing to the Aral Sea. MATERIALS AND METHODS: Pure model substances of three polychlorobornanes (toxaphene congeners P26, P50, and P62) were synthesized, their environmentally important thermal properties measured by differential scanning calorimetry, as evaluated from literature data, and their temperature dependences estimated by the QSPR programs VPLEST, WATSOLU, and TDLKOW. The evaluated property parameters were used to model their atmospheric long-range transport from toxaphene heavy usage areas in Ukraine and Aral/SyrDarja/AmuDarja region areas, through East Europe and Northern Norway (Finnmarken) to the Barents Sea. The time period used for the emission model was June 1997. Usual weather conditions in June were applied in the model, which was constructed by chaining FATEMOD model boxes of the catchment's areas along assumed maximal air flow trajectories. Analysis of the three chlorobornanes in toxaphene mixtures function as a basis for the estimates of emission levels caused by its usage. High estimate (A) was taken from contents in a Western product chlorocamphene and low estimate (B) from mean contents in Russian polychloroterpene products to achieve modeled water concentrations. Bioaccumulation to analyzed lipid of aquatic biota at the target region was estimated by using statistical calculation for persistent organic pollutants in literature. RESULTS: The results from model runs A and B (high and low emission estimate) for levels in sea biota were compared to analysis results of samples taken in August 1997 at Barents Sea. The model results (ng g(-1) lw): 4-95 in lipid of planktovores and 7-150 in lipid of piscivores, were in fair agreement with the analysis results from August 1997: 21-31 in Themisto libellula (chatka), 26-42 in Boreocadus saida (Polar cod), and 5-27 in Gadus morhua (cod) liver. DISCUSSION: The modeling results indicate that the application of chained simple multimedia catchment boxes on predicted trajectory is a useful method for estimation of volatile airborne persistent chemical exposures to biota in remote areas. For hazard assessment of these pollutants, their properties, especially temperature dependences, must be estimated by a reasonable accuracy. That can be achieved by using measurements in laboratory with pure model compounds and estimation of properties by thermodynamic QSPR methods. The property parameters can be validated by comparing their values at an environmental temperature range with measured or QSPR-estimated values derived by independent methods. The chained box method used for long-range air transport modeling can be more suitable than global parallel zones modeling used earlier, provided that the main airflow trajectories and properties of transported pollutants are predictable enough. CONCLUSIONS: Long-range air transport modeling of persistent, especially photo-resistant organic compounds using a chain of joint simple boxes of catchment's environments is a feasible method to predict concentrations of pollutants at the target area. This is justified from model results compared with analytical measurements in Barents Sea biota in August 1997: three of six modeled values were high and the other three low compared to the analysis results. The order of magnitude level was similar in both modeled (planktovore and piscivore) and observed (chatka and polar cod) values of lipid samples. The obtained results were too limited to firm validation but are sufficient to justify feasibility of the method, which prompts one to perform more studies on this modeling system. RECOMMENDATIONS AND PERSPECTIVES: For assessment of the risk of environmental damages, chemical fate determination is an essential tool for chemical control, e.g., for EU following the REACH rules. The present conclusion of applicability of the chained single-box multimedia modeling can be validated by further studies using analyses of emissions and target biota in various other cases. To achieve useful results, fate models built with databases having automatic steps for most calculations and outputs accessible to all chemical control professionals are essential. Our FATEMOD program catchments at environments and compound properties listed in the database represent a feasible tool for local, regional, and, according our present test results, for global exposure predictions. As an extended use of model, emission estimates can be achieved by reversed modeling from analysis results of samples corresponding to the target area.


Asunto(s)
Contaminantes Atmosféricos/química , Atmósfera/química , Modelos Químicos , Toxafeno/análogos & derivados , Toxafeno/química , Europa (Continente) , Estructura Molecular , Programas Informáticos
14.
ACS Omega ; 4(25): 21596-21603, 2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31867556

RESUMEN

Global lipid analysis still lags behind proteomics with respect to the availability of databases, experimental protocols, and specialized software. Determining the lipidome of cellular model systems in common use is of particular importance, especially when research questions involve lipids directly. In Parkinson's disease research, there is a growing awareness for the role of the biological membrane, where individual lipids may contribute to provoking α-synuclein oligomerisation and fibrillation. We present an analysis of the whole cell and plasma membrane lipid isolates of a neuroblastoma cell line, SH-SY5Y, a commonly used model system for research on this and other neurodegenerative diseases. We have used two complementary lipidomics methods. The relative quantities of PC, PE, SMs, CL, PI, PG, and PS were determined by 31P NMR. Fatty acid chain composition and their relative abundances within each phospholipid group were evaluated by liquid chromatography-tandem mass spectrometry. For this part of the analysis, we have developed and made available a set of Matlab scripts, LipMat. Our approach allowed us to observe several deviations of lipid abundances when compared to published reports regarding phospholipid analysis of cell cultures or brain matter. The most striking was the high abundance of PC (54.7 ± 1.9%) and low abundance of PE (17.8 ± 4.8%) and SMs (2.7 ± 1.2%). In addition, the observed abundance of PS was smaller than expected (4.7 ± 2.7%), similar to the observed abundance of PG (4.5 ± 1.8%). The observed fatty acid chain distribution was similar to the whole brain content with some notable differences: a higher abundance of 16:1 PC FA (17.4 ± 3.4% in PC whole cell content), lower abundance of 22:6 PE FA (15.9 ± 2.2% in plasma membrane fraction), and a complete lack of 22:6 PS FA.

16.
J Proteomics ; 103: 254-60, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24726481

RESUMEN

With the recent introduction of higher-energy collisional dissociation (HCD) in Orbitrap mass spectrometry, the popularity of that technique has grown tremendously in the proteomics society. HCD spectra, however, are characterized by a limited distribution of bn-type ions, which permit the generation of reliable sequence tags based on complementary b,y pairs both for de novo sequencing and sequence tagging strategies. Instead, most peptide HCD spectra (~95%) are dominated with b2 ions. In this work, we analyzed positive predictive values of b2 ions in HCD, and found that b2 ions can be determined with >97% certainty in the presence of a2 and its complementary yn-2 ions. Analytically, b2 ions provide information on the composition of the first two N-terminal amino acids in peptides. Their utilization in N-terminal sequence tagging leads to a significant decrease in false discovery rate by filtering out false positives while retaining true positive identifications. As a consequence, the number of peptide spectrum matches (PSMs) increased by 4.8% at fixed FDR (1%). This approach allows for deconvolution of mixture spectra and increased the number of PSM to 9.2% in a complex human sample and to 24% in a complex sample of synthetic peptides at 1% FDR.


Asunto(s)
Péptidos/química , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Humanos , Iones/química , Análisis de Secuencia de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA