Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37047540

RESUMEN

We prepared three-dimensional (3-D) organoids of human stomach cancers and examined the correlation between the tumorigenicity and cytotoxicity of Helicobacter pylori (H. pylori). In addition, the effects of hepatoma-derived growth factor (HDGF) and tumor necrosis factor (TNFα) on the growth and invasion activity of H. pylori-infected gastric cancer organoids were examined. Cytotoxin-associated gene A (CagA)-green fluorescence protein (GFP)-labeled H. pylori was used to trace the infection in gastric organoids. The cytotoxicity of Cag encoded toxins from different species of H. pylori did not affect the proliferation of each H. pylori-infected cancer organoid. To clarify the role of HDGF and TNFα secreted from H. pylori-infected cancer organoids, we prepared recombinant HDGF and TNFα and measured the cytotoxicity and invasion of gastric cancer organoids. HDGF controlled the growth of each organoid in a species-specific manner of H. pylori, but TNFα decreased the cell viability in H. pylori-infected cancer organoids. Furthermore, HDGF controlled the invasion activity of H. pylori-infected cancer organoid in a species-dependent manner. However, TNFα decreased the invasion activities of most organoids. We found different signaling of cytotoxicity and invasion of human gastric organoids in response to HDGF and TNFα during infection by H. pylori. Recombinant HDGF and TNFα inhibited the development and invasion of H. pylori-infected gastric cancer differently. Thus, we propose that HDGF and TNFα are independent signals for development of H. pylori-infected gastric cancer. The signaling of growth factors in 3-D organoid culture systems is different from those in two-dimensional cancer cells.


Asunto(s)
Carcinoma Hepatocelular , Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Hepáticas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Factor de Necrosis Tumoral alfa/metabolismo , Helicobacter pylori/metabolismo , Antígenos Bacterianos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Organoides/metabolismo , Infecciones por Helicobacter/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Proteínas Bacterianas/metabolismo
2.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37958895

RESUMEN

Gastric cancer (GC) organoids are frequently used to examine cell proliferation and death as well as cancer development. Invasion/migration assay, xenotransplantation, and reactive oxygen species (ROS) production were used to examine the effects of antioxidant drugs, including perillaldehyde (PEA), cinnamaldehyde (CA), and sulforaphane (SFN), on GC. PEA and CA repressed the proliferation of human GC organoids, whereas SFN enhanced it. Caspase 3 activities were also repressed on treatment with PEA and CA. Furthermore, the tumor formation and invasive activities were repressed on treatment with PEA and CA, whereas they were enhanced on treatment with SFN. These results in three-dimensional (3D)-GC organoids showed the different cancer development of phase II enzyme ligands in 2D-GC cells. ROS production and the expression of TP53, nuclear factor erythroid 2-related factor (NRF2), and Jun dimerization protein 2 were also downregulated on treatment with PEA and CA, but not SFN. NRF2 knockdown reversed the effects of these antioxidant drugs on the invasive activities of the 3D-GC organoids. Moreover, ROS production was also inhibited by treatment with PEA and CA, but not SFN. Thus, NRF2 plays a key role in the differential effects of these antioxidant drugs on cancer progression in 3D-GC organoids. PEA and CA can potentially be new antitumorigenic therapeutics for GC.


Asunto(s)
Antioxidantes , Neoplasias Gástricas , Humanos , Antioxidantes/farmacología , Apoptosis , Tratamiento Basado en Trasplante de Células y Tejidos , Isotiocianatos/farmacología , Isotiocianatos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Organoides/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Sulfóxidos/farmacología
3.
Cell Biol Toxicol ; 38(2): 203-222, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33723743

RESUMEN

The aryl hydrocarbon receptor (AhR) is a ligand-binding protein that responds to environmental aromatic hydrocarbons and stimulates the transcription of downstream phase I enzyme-related genes by binding the cis element of dioxin-responsive elements (DREs)/xenobiotic-responsive elements. Dimethyl sulfoxide (DMSO) is a well-known organic solvent that is often used to dissolve phase I reagents in toxicology and oxidative stress research experiments. In the current study, we discovered that 0.1% DMSO significantly induced the activation of the AhR promoter via DREs and produced reactive oxygen species, which induced apoptosis in mouse embryonic fibroblasts (MEFs). Moreover, Jun dimerization protein 2 (Jdp2) was found to be required for activation of the AhR promoter in response to DMSO. Coimmunoprecipitation and chromatin immunoprecipitation studies demonstrated that the phase I-dependent transcription factors, AhR and the AhR nuclear translocator, and phase II-dependent transcription factors such as nuclear factor (erythroid-derived 2)-like 2 (Nrf2) integrated into DRE sites together with Jdp2 to form an activation complex to increase AhR promoter activity in response to DMSO in MEFs. Our findings provide evidence for the functional role of Jdp2 in controlling the AhR gene via Nrf2 and provide insights into how Jdp2 contributes to the regulation of ROS production and the cell spreading and apoptosis produced by the ligand DMSO in MEFs.


Asunto(s)
Dibenzodioxinas Policloradas , Receptores de Hidrocarburo de Aril , Animales , Dimetilsulfóxido/farmacología , Fibroblastos/metabolismo , Ligandos , Ratones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Dibenzodioxinas Policloradas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo
4.
BMC Microbiol ; 20(1): 214, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32689931

RESUMEN

Triggered in response to external and internal ligands in cells and animals, redox homeostasis is transmitted via signal molecules involved in defense redox mechanisms through networks of cell proliferation, differentiation, intracellular detoxification, bacterial infection, and immune reactions. Cellular oxidation is not necessarily harmful per se, but its effects depend on the balance between the peroxidation and antioxidation cascades, which can vary according to the stimulus and serve to maintain oxygen homeostasis. The reactive oxygen species (ROS) that are generated during influenza virus (IV) infection have critical effects on both the virus and host cells. In this review, we outline the link between viral infection and redox control using IV infection as an example. We discuss the current state of knowledge on the molecular relationship between cellular oxidation mediated by ROS accumulation and the diversity of IV infection. We also summarize the potential anti-IV agents available currently that act by targeting redox biology/pathophysiology.


Asunto(s)
Virus de la Influenza A/patogenicidad , Gripe Humana/metabolismo , Infecciones por Orthomyxoviridae/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Diferenciación Celular , Proliferación Celular , Homeostasis/efectos de los fármacos , Humanos , Virus de la Influenza A/clasificación , Virus de la Influenza A/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Oxidación-Reducción/efectos de los fármacos , Transducción de Señal
5.
Stem Cells ; 35(10): 2115-2128, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28782268

RESUMEN

Reprogramming of cancer cells into induced pluripotent stem cells (iPSCs) is a compelling idea for inhibiting oncogenesis, especially through modulation of homeobox proteins in this reprogramming process. We examined the role of various long noncoding RNAs (lncRNAs)-homeobox protein HOXA13 axis on the switching of the oncogenic function of bone morphogenetic protein 7 (BMP7), which is significantly lost in the gastric cancer cell derived iPS-like cells (iPSLCs). BMP7 promoter activation occurred through the corecruitment of HOXA13, mixed-lineage leukemia 1 lysine N-methyltransferase, WD repeat-containing protein 5, and lncRNA HoxA transcript at the distal tip (HOTTIP) to commit the epigenetic changes to the trimethylation of lysine 4 on histone H3 in cancer cells. By contrast, HOXA13 inhibited BMP7 expression in iPSLCs via the corecruitment of HOXA13, enhancer of zeste homolog 2, Jumonji and AT rich interactive domain 2, and lncRNA HoxA transcript antisense RNA (HOTAIR) to various cis-element of the BMP7 promoter. Knockdown experiments demonstrated that HOTTIP contributed positively, but HOTAIR regulated negatively to HOXA13-mediated BMP7 expression in cancer cells and iPSLCs, respectively. These findings indicate that the recruitment of HOXA13-HOTTIP and HOXA13-HOTAIR to different sites in the BMP7 promoter is crucial for the oncogenic fate of human gastric cells. Reprogramming with octamer-binding protein 4 and Jun dimerization protein 2 can inhibit tumorigenesis by switching off BMP7. Stem Cells 2017;35:2115-2128.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Proteínas de Homeodominio/genética , ARN Largo no Codificante/genética , Neoplasias Gástricas/genética , Proteína Morfogenética Ósea 7/genética , Proteína Morfogenética Ósea 7/metabolismo , Línea Celular Tumoral , Proliferación Celular , Proteínas de Homeodominio/metabolismo , Humanos , Regiones Promotoras Genéticas , ARN Largo no Codificante/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología
6.
Stem Cells ; 34(11): 2613-2624, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27341307

RESUMEN

The network of stemness genes and oncogenes in human patient-specific reprogrammed cancer stem cells (CSCs) remains elusive, especially in liver cancer. HepG2-derived induced pluripotent stem cell-like cells (HepG2-iPS-like cells) were generated by introducing Yamanaka factors and the knockdown vector shTP53. They exhibited features of stemness and a higher tumorigenesis after xenograft transplantation compared with HepG2 cells. The cancerous mass of severe combined immunodeficiency (SCID) mice derived from one colony was dissected and cultured to establish reprogrammed HepG2-derived CSC-like cells (designated rG2-DC-1C). A single colony exhibited 42% occurrence of tumors with higher proliferation capacities. rG2-DC-1C showed continuous expression of the OCT4 stemness gene and of representative tumor markers, potentiated chemoresistance characteristics, and invasion activities. The sphere-colony formation ability and the invasion activity of rG2-DC-1C were also higher than those of HepG2 cells. Moreover, the expression of the OCT4 gene and the c-JUN oncogene, but not of c-MYC, was significantly elevated in rG2-DC-1C, whereas no c-JUN expression was observed in HepG2 cells. The positive-feedback regulation via OCT4-mediated transactivation of the c-JUN promoter and the c-JUN-mediated transactivation of the OCT4 promoter were crucial for promoting cancer development and maintaining cancer stemness in rG2-DC-1C. Increased expression of OCT4 and c-JUN was detected in the early stage of human liver cancer. Therefore, the positive feedback regulation of OCT4 and c-JUN, resulting in the continuous expression of oncogenes such as c-JUN, seems to play a critical role in the determination of the cell fate decision from iPS cells to CSCs in liver cancer. Stem Cells 2016;34:2613-2624.


Asunto(s)
Retroalimentación Fisiológica , Regulación Neoplásica de la Expresión Génica , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Neoplasias Hepáticas/genética , Células Madre Neoplásicas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Anciano , Animales , Antineoplásicos/farmacología , Diferenciación Celular , Reprogramación Celular , Cisplatino/farmacología , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/genética , Femenino , Fluorouracilo/farmacología , Células Hep G2 , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones SCID , Persona de Mediana Edad , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Transducción de Señal , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Activación Transcripcional , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Int J Mol Sci ; 15(3): 5011-31, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24658443

RESUMEN

Although the androgen receptor (AR) has been implicated in the promotion of apoptosis in testicular cells (TSCs), the molecular pathway underlying AR-mediated apoptosis and its sensitivity to environmental hormones in TSCs and induced pluripotent stem cells (iPSCs) remain unclear. We generated the iPSCs from bovine TSCs via the electroporation of OCT4. The established iPSCs were supplemented with leukemia inhibitory factor and bone morphogenetic protein 4 to maintain and stabilize the expression of stemness genes and their pluripotency. Apoptosis signaling was assessed after exposure to mono-(2-ethylhexyl) phthalate (MEHP), the active metabolite of di-(2-ethylhexyl) phthalate. Here, we report that iPSCs were more resistant to MEHP-induced apoptosis than were original TSCs. MEHP also repressed the expression of AR and inactivated WNT signaling, and then led to the commitment of cells to apoptosis via the cyclin dependent kinase inhibitor p21CIP1. The loss of the frizzed receptor 7 and the gain of p21CIP were responsible for the stimulatory effect of MEHP on AR-mediated apoptosis. Our results suggest that testicular iPSCs can be used to study the signaling pathways involved in the response to environmental disruptors, and to assess the toxicity of environmental endocrine disruptors in terms of the maintenance of stemness and pluripotency.


Asunto(s)
Apoptosis/efectos de los fármacos , Dietilhexil Ftalato/análogos & derivados , Células Madre Pluripotentes Inducidas/citología , Testículo/citología , Animales , Apoptosis/genética , Western Blotting , Bovinos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Dietilhexil Ftalato/farmacología , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Expresión Génica/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones SCID , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Interferencia de ARN , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Testículo/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/genética
8.
Environ Pollut ; 347: 123722, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38460589

RESUMEN

An understanding of the risk of gene deletion and mutation posed by endocrine-disrupting chemicals (EDCs) is necessary for the identification of etiological reagents for many human diseases. Therefore, the characterization of the genetic traits caused by developmental exposure to EDCs is an important research subject. A new regenerative approach using embryonic stem cells (ESCs) holds promise for the development of stem-cell-based therapies and the identification of novel therapeutic agents against human diseases. Here, we focused on the characterization of the genetic traits and alterations in pluripotency/stemness triggered by phthalate ester derivatives. Regarding their in vitro effects, we reported the abilities of ESCs regarding proliferation, cell-cycle control, and neural ectoderm differentiation. The expression of their stemness-related genes and their genetic changes toward neural differentiation were examined, which led to the observation that the tumor suppressor gene product p53/retinoblastoma protein 1 and its related cascades play critical functions in cell-cycle progression, cell death, and neural differentiation. In addition, the expression of neurogenic differentiation 1 was affected by exposure to di-n-butyl phthalate in the context of cell differentiation into neural lineages. The nervous system is one of the most sensitive tissues to exposure to phthalate ester derivatives. The present screening system provides a good tool for studying the mechanisms underlying the effects of EDCs on the developmental regulation of humans and rodents, especially on the neuronal development of ESCs.


Asunto(s)
Dibutil Ftalato , Células Madre Embrionarias de Ratones , Ácidos Ftálicos , Animales , Humanos , Ratones , Dibutil Ftalato/toxicidad , Diferenciación Celular , Ésteres
9.
Inflamm Regen ; 43(1): 42, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596694

RESUMEN

BACKGROUND: Crosstalk between the aryl hydrocarbon receptor (AhR) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling is called the "AhR-Nrf2 gene battery", which works synergistically in detoxification to support cell survival. Nrf2-dependent phase II gene promoters are controlled by coordinated recruitment of the AhR to adjacent dioxin responsive element (DRE) and Nrf2 recruitment to the antioxidative response element (ARE). The molecular interaction between AhR and Nrf2 members, and the regulation of each target, including phase I and II gene complexes, and their mediators are poorly understood. METHODS: Knockdown and forced expression of AhR-Nrf2 battery members were used to examine the molecular interactions between the AhR-Nrf2 axis and AhR promoter activation. Sequential immunoprecipitation, chromatin immunoprecipitation, and histology were used to identify each protein complex recruited to their respective cis-elements in the AhR promoter. Actin fiber distribution, cell spreading, and invasion were examined to identify functional differences in the AhR-Jdp2 axis between wild-type and Jdp2 knockout cells. The possible tumorigenic role of Jdp2 in the AhR-Nrf2 axis was examined in mutant Kras-Trp53-driven pancreatic tumors. RESULTS: Crosstalk between AhR and Nrf2 was evident at the transcriptional level. The AhR promoter was activated by phase I ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) through the AhR-Jdp2-Nrf2 axis in a time- and spatial transcription-dependent manner. Jdp2 was a bifunctional activator of DRE- and ARE-mediated transcription in response to TCDD. After TCDD exposure, Jdp2 activated the AhR promoter at the DRE and then moved to the ARE where it activated the promoter to increase reactive oxygen species (ROS)-mediated functions such as cell spreading and invasion in normal cells, and cancer regression in mutant Kras-Trp53-driven pancreatic tumor cells. CONCLUSIONS: Jdp2 plays a critical role in AhR promoter activation through the AhR-Jdp2-Nrf2 axis in a spatiotemporal manner. The AhR functions to maintain ROS balance and cell spreading, invasion, and cancer regression in a mouse model of mutant Kras-Trp53 pancreatic cancer. These findings provide new insights into the roles of Jdp2 in the homeostatic regulation of oxidative stress and in the antioxidation response in detoxification, inflammation, and cancer progression.

10.
J Pers Med ; 12(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35629138

RESUMEN

The use of biomarkers in cancer diagnosis, therapy, and prognosis has been highly effective over several decades. Studies of biomarkers in cancer patients pre- and post-treatment and during cancer progression have helped identify cancer stem cells (CSCs) and their related microenvironments. These analyses are critical for the therapeutic application of drugs and the efficient targeting and prevention of cancer progression, as well as the investigation of the mechanism of the cancer development. Biomarkers that characterize CSCs have thus been identified and correlated to diagnosis, therapy, and prognosis. However, CSCs demonstrate elevated levels of plasticity, which alters their functional phenotype and appearance by interacting with their microenvironments, in response to chemotherapy and radiotherapeutics. In turn, these changes induce different metabolic adaptations of CSCs. This article provides a review of the most frequently used CSCs and stem cell markers.

11.
Cells ; 11(2)2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-35053302

RESUMEN

There is considerable cellular diversity in the human stomach, which has helped to clarify cell plasticity in normal development and tumorigenesis. Thus, the stomach is an interesting model for understanding cellular plasticity and for developing prospective anticancer therapeutic agents. However, many questions remain regarding the development of cancers in vivo and in vitro in two- or three-dimensional (2D/3D) cultures, as well as the role of Helicobacter pylori (H. p.) infection. Here, we focus on the characteristics of cancer stem cells and their derived 3D organoids in culture, including the formation of stem cell niches. We define the conditions required for such organoid culture in vitro and examine the ability of such models for testing the use of anticancer agents. We also summarize the signaling cascades and the specific markers of stomach-cancer-derived organoids induced by H. p. infection, and their stem cell niches.


Asunto(s)
Investigación Biomédica , Infecciones por Helicobacter/patología , Células Madre Pluripotentes Inducidas/fisiología , Organoides/patología , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología , Técnicas de Cultivo de Tejidos , Humanos , Neoplasias Gástricas/genética
12.
J Pers Med ; 12(6)2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35743714

RESUMEN

Stomach cancer has a high mortality, which is partially caused by an absence of suitable biomarkers to allow detection of the initiation stages of cancer progression. Thus, identification of critical biomarkers associated with gastric cancer (GC) is required to advance its clinical diagnoses and treatment. Recent studies using tracing models for lineage analysis of GC stem cells indicate that the cell fate decision of the gastric stem cells might be an important issue for stem cell plasticity. They include leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5+), Cholecystokinin receptor 2 (Cckr2+), and axis inhibition protein 2 (Axin2+) as the stem cell markers in the antrum, Trefoil Factor 2 (TFF2+), Mist1+ stem cells, and Troy+ chief cells in the corpus. By contrast, Estrogen receptor 1 (eR1), Leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1), SRY (sex determining region Y)-box 2 (Sox2), and B lymphoma Mo-MLV insertion region 1 homolog (Bmi1) are rich in both the antrum and corpus regions. These markers might help to identify the cell-lineage identity and analyze the plasticity of each stem cell population. Thus, identification of marker genes for the development of GC and its environment is critical for the clinical application of cancer stem cells in the prevention of stomach cancers.

13.
J Biomed Biotechnol ; 2011: 569034, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21197464

RESUMEN

Transcription factor, Jun dimerization protein 2 (JDP2), binds directly to histones and DNAs and then inhibits the p300-mediated acetylation both of core histones and of reconstituted nucleosomes that contain JDP2 recognition DNA sequences. JDP2 plays a key role as a repressor of adipocyte differentiation by regulation of the expression of the gene C/EBPδ via inhibition of histone acetylation. Moreover, JDP2-deficient mouse embryonic fibroblasts (JDP2(-/-) MEFs) are resistant to replicative senescence. JDP2 inhibits the recruitment of polycomb repressive complexes (PRC1 and PRC2) to the promoter of the gene encoding p16(Ink4a), resulting from the inhibition of methylation of lysine 27 of histone H3 (H3K27). Therefore, it seems that chromatin-remodeling factors, including the PRC complex controlled by JDP2, may be important players in the senescence program. The novel mechanisms that underline the action of JDP2 in inducing cellular senescence and suppressing adipocyte differentiation are reviewed.


Asunto(s)
Diferenciación Celular/fisiología , Senescencia Celular/fisiología , Histonas/fisiología , Proteínas Represoras/fisiología , Animales , Humanos , Ratones
14.
Stem Cell Res Ther ; 12(1): 492, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34488885

RESUMEN

It is postulated as a general concept of cancer stem cells (CSCs) that they can produce cancer cells overtly and repopulate cancer progenitor cells indefinitely. The CSC niche is part of a specialized cancer microenvironment that is important to keep the phenotypes of CSCs. Stem cell- and induced pluripotent stem cell (iPSC)-derived organoids with genetic manipulation are beneficial to the investigation of the regulation of the microenvironment of CSCs. It would be useful to assess the efficiency of the cancer microenvironment on initiation and progression of cancers. To identify CSCs in cancer tissues, normal cell organoids and gastric cancer organoids from the cancerous areas, as well as iPSCs, were established several years ago. However, many questions remain about the extent to which these cultures recapitulate the development of the gastrointestinal tract and the mechanism of Helicobacter pylori-induced cancer progression. To clarify the fidelity of human organoid models, we have noted several key issues for the cultivation of, and differences between, normal and cancerous organoids. We developed precise culture conditions for gastric organoids in vitro to improve the accuracy of the generation of organoid models for therapeutic and medical applications. In addition, the current knowledge on gastrointestinal CSC research, including the topic of CSC markers, cancer cell reprogramming, and application to target cancer cell plasticity through niches, should be reinforced. We discuss the progression of cancers derived from human gastric organoids and the identification of CSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neoplasias Gástricas , Humanos , Células Madre Neoplásicas , Organoides , Neoplasias Gástricas/genética , Microambiente Tumoral
15.
Cancers (Basel) ; 13(15)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34359820

RESUMEN

The high mortality of pancreatic cancer is attributed to the insidious progression of this disease, which results in a delayed diagnosis and advanced disease stage at diagnosis. More than 35% of patients with pancreatic cancer are in stage III, whereas 50% are in stage IV at diagnosis. Thus, understanding the aggressive features of pancreatic cancer will contribute to the resolution of problems, such as its early recurrence, metastasis, and resistance to chemotherapy and radiotherapy. Therefore, new therapeutic strategies targeting tumor suppressor gene products may help prevent the progression of pancreatic cancer. In this review, we discuss several recent clinical trials of pancreatic cancer and recent studies reporting safe and effective treatment modalities for patients with advanced pancreatic cancer.

16.
Stem Cell Res Ther ; 12(1): 369, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34187574

RESUMEN

BACKGROUND: The cerebellum is the sensitive region of the brain to developmental abnormalities related to the effects of oxidative stresses. Abnormal cerebellar lobe formation, found in Jun dimerization protein 2 (Jdp2)-knockout (KO) mice, is related to increased antioxidant formation and a reduction in apoptotic cell death in granule cell progenitors (GCPs). Here, we aim that Jdp2 plays a critical role of cerebellar development which is affected by the ROS regulation and redox control. OBJECTIVE: Jdp2-promoter-Cre transgenic mouse displayed a positive signal in the cerebellum, especially within granule cells. Jdp2-KO mice exhibited impaired development of the cerebellum compared with wild-type (WT) mice. The antioxidation controlled gene, such as cystine-glutamate transporter Slc7a11, might be critical to regulate the redox homeostasis and the development of the cerebellum. METHODS: We generated the Jdp2-promoter-Cre mice and Jdp2-KO mice to examine the levels of Slc7a11, ROS levels and the expressions of antioxidation related genes were examined in the mouse cerebellum using the immunohistochemistry. RESULTS: The cerebellum of Jdp2-KO mice displayed expression of the cystine-glutamate transporter Slc7a11, within the internal granule layer at postnatal day 6; in contrast, the WT cerebellum mainly displayed Sla7a11 expression in the external granule layer. Moreover, development of the cerebellar lobes in Jdp2-KO mice was altered compared with WT mice. Expression of Slc7a11, Nrf2, and p21Cip1 was higher in the cerebellum of Jdp2-KO mice than in WT mice. CONCLUSION: Jdp2 is a critical regulator of Slc7a11 transporter during the antioxidation response, which might control the growth, apoptosis, and differentiation of GCPs in the cerebellar lobes. These observations are consistent with our previous study in vitro.


Asunto(s)
Cerebelo , Células-Madre Neurales , Animales , Diferenciación Celular , Ratones , Ratones Noqueados , Ratones Transgénicos
17.
J Exp Clin Cancer Res ; 39(1): 100, 2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493501

RESUMEN

Human pluripotent embryonic stem cells have two special features: self-renewal and pluripotency. It is important to understand the properties of pluripotent stem cells and reprogrammed stem cells. One of the major problems is the risk of reprogrammed stem cells developing into tumors. To understand the process of differentiation through which stem cells develop into cancer cells, investigators have attempted to identify the key factors that generate tumors in humans. The most effective method for the prevention of tumorigenesis is the exclusion of cancer cells during cell reprogramming. The risk of cancer formation is dependent on mutations of oncogenes and tumor suppressor genes during the conversion of stem cells to cancer cells and on the environmental effects of pluripotent stem cells. Dissecting the processes of epigenetic regulation and chromatin regulation may be helpful for achieving correct cell reprogramming without inducing tumor formation and for developing new drugs for cancer treatment. This review focuses on the risk of tumor formation by human pluripotent stem cells, and on the possible treatment options if it occurs. Potential new techniques that target epigenetic processes and chromatin regulation provide opportunities for human cancer modeling and clinical applications of regenerative medicine.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Epigénesis Genética , Neoplasias/prevención & control , Células Madre Pluripotentes/citología , Animales , Humanos , Neoplasias/genética , Neoplasias/patología
18.
Sci Rep ; 10(1): 4933, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188872

RESUMEN

The Jun dimerization protein 2 (Jdp2) is expressed predominantly in granule cell progenitors (GCPs) in the cerebellum, as was shown in Jdp2-promoter-Cre transgenic mice. Cerebellum of Jdp2-knockout (KO) mice contains lower number of Atoh-1 positive GCPs than WT. Primary cultures of GCPs from Jdp2-KO mice at postnatal day 5 were more resistant to apoptosis than GCPs from wild-type mice. In Jdp2-KO GCPs, the levels of both the glutamate‒cystine exchanger Sc7a11 and glutathione were increased; by contrast, the activity of reactive oxygen species (ROS) was decreased; these changes confer resistance to ROS-mediated apoptosis. In the absence of Jdp2, a complex of the cyclin-dependent kinase inhibitor 1 (p21Cip1) and Nrf2 bound to antioxidant response elements of the Slc7a11 promoter and provide redox control to block ROS-mediated apoptosis. These findings suggest that an interplay between Jdp2, Nrf2, and p21Cip1 regulates the GCP apoptosis, which is one of critical events for normal development of the cerebellum.

20.
Inflamm Regen ; 37: 15, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29259714

RESUMEN

The cancer stem cell (CSC) hypothesis postulates that cancer originates from the malignant transformation of stem/progenitor cells and is considered to apply to many cancers, including liver cancer. Identification that CSCs are responsible for drug resistance, metastasis, and secondary tumor appearance suggests that these populations are novel obligatory targets for the treatment of cancer. Here, we describe our new method for identifying potential CSC candidates. The reprogramming of cancer cells via induced pluripotent stem cell (iPSC) technology is a novel therapy for the treatment and for the study of CSC-related genes. This technology has advantages for studying the interactions between CSC-related genes and the cancer niche microenvironment. This technology may also provide a useful platform for studying the genes involved in the generation of CSCs before and after reprogramming, and for elucidating the mechanisms underlying cancer initiation and progression. The present review summarizes the current understanding of transcription factors involved in the generation of liver CSCs from liver cancer cell-derived iPSCs and how these contribute to oncogenesis, and discusses the modeling of liver cancer development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA