Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Bioorg Med Chem Lett ; 27(15): 3289-3293, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28648462

RESUMEN

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder that is caused by inactivating mutations in the Survival of motor neuron 1 (SMN1) gene, resulting in decreased SMN protein expression. Humans possess a paralog gene, SMN2, which contains a splicing defect in exon 7 leading to diminished expression of full-length, fully functional SMN protein. Increasing SMN2 expression has been a focus of therapeutic development for SMA. Multiple studies have reported the efficacy of histone deacetylase inhibitors (HDACi) in this regard. However, clinical trials involving HDACi have been unsatisfactory, possibly because previous efforts to identify HDACi to treat SMA have employed non-neuronal cells as the screening platform. To address this issue, we generated an SMA-patient specific, induced pluripotent stem cell (iPSC) derived neuronal cell line that contains homogenous Tuj1+neurons. We screened a small library of cyclic tetrapeptide HDACi using this SMA neuronal platform and discovered compounds that elevate SMN2 expression by an impressive twofold or higher. These candidates are also capable of forming gems intranuclearly in SMA neurons, demonstrating biological activity. Our study identifies new potential HDACi therapeutics for SMA screened using a disease-relevant SMA neuronal cellular model.


Asunto(s)
Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Atrofia Muscular Espinal/tratamiento farmacológico , Neuronas/efectos de los fármacos , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Células Cultivadas , Evaluación Preclínica de Medicamentos , Humanos , Células Madre Pluripotentes Inducidas/citología , Atrofia Muscular Espinal/genética , Neurogénesis , Neuronas/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Regulación hacia Arriba/efectos de los fármacos
2.
RNA ; 20(5): 621-31, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24677349

RESUMEN

microRNAs (miRNAs) are crucial for cellular development and homeostasis. In order to better understand regulation of miRNA biosynthesis, we studied cleavage of primary miRNAs by Drosha. While Drosha knockdown triggers an expected decrease of many mature miRNAs in human embryonic stem cells (hESC), a subset of miRNAs are not reduced. Statistical analysis of miRNA secondary structure and fold change of expression in response to Drosha knockdown showed that absence of mismatches in the central region of the hairpin, 5 and 9-12 nt from the Drosha cutting site conferred decreased sensitivity to Drosha knockdown. This suggests that, when limiting, Drosha processes miRNAs without mismatches more efficiently than mismatched miRNAs. This is important because Drosha expression changes over cellular development and the fold change of expression for miRNAs with mismatches in the central region correlates with Drosha levels. To examine the biochemical relationship directly, we overexpressed structural variants of miRNA-145, miRNA-137, miRNA-9, and miRNA-200b in HeLa cells with and without Drosha knockdown; for these miRNAs, elimination of mismatches in the central region increased, and addition of mismatches decreased their expression in an in vitro assay and in cells with low Drosha expression. Change in Drosha expression can be a biologically relevant mechanism by which eukaryotic cells control miRNA profiles. This phenomenon may explain the impact of point mutations outside the seed region of certain miRNAs.


Asunto(s)
Regulación de la Expresión Génica/genética , MicroARNs/genética , Conformación de Ácido Nucleico , Ribonucleasa III/genética , Células HeLa , Humanos , MicroARNs/química , Mutación Puntual , Ribonucleasa III/química
3.
Ann Neurol ; 76(4): 489-508, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25159818

RESUMEN

OBJECTIVE: To investigate whether a histone deacetylase inhibitor (HDACi) would be effective in an in vitro model for the neurodegenerative disease Friedreich ataxia (FRDA) and to evaluate safety and surrogate markers of efficacy in a phase I clinical trial in patients. METHODS: We used a human FRDA neuronal cell model, derived from patient induced pluripotent stem cells, to determine the efficacy of a 2-aminobenzamide HDACi (109) as a modulator of FXN gene expression and chromatin histone modifications. FRDA patients were dosed in 4 cohorts, ranging from 30mg/day to 240mg/day of the formulated drug product of HDACi 109, RG2833. Patients were monitored for adverse effects as well as for increases in FXN mRNA, frataxin protein, and chromatin modification in blood cells. RESULTS: In the neuronal cell model, HDACi 109/RG2833 increases FXN mRNA levels and frataxin protein, with concomitant changes in the epigenetic state of the gene. Chromatin signatures indicate that histone H3 lysine 9 is a key residue for gene silencing through methylation and reactivation through acetylation, mediated by the HDACi. Drug treatment in FRDA patients demonstrated increased FXN mRNA and H3 lysine 9 acetylation in peripheral blood mononuclear cells. No safety issues were encountered. INTERPRETATION: Drug exposure inducing epigenetic changes in neurons in vitro is comparable to the exposure required in patients to see epigenetic changes in circulating lymphoid cells and increases in gene expression. These findings provide a proof of concept for the development of an epigenetic therapy for this fatal neurological disease.


Asunto(s)
Ataxia de Friedreich/tratamiento farmacológico , Ataxia de Friedreich/genética , Regulación de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/uso terapéutico , Proteínas de Unión a Hierro/genética , Administración Oral , Adolescente , Adulto , Aminocaproatos/farmacología , Aminocaproatos/uso terapéutico , Área Bajo la Curva , Benzamidas/farmacología , Benzamidas/uso terapéutico , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular Transformada , Inmunoprecipitación de Cromatina , Estudios de Cohortes , Estudios Transversales , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Ataxia de Friedreich/patología , Regulación de la Expresión Génica/genética , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Células Madre Pluripotentes , Expansión de Repetición de Trinucleótido/genética , Adulto Joven , Frataxina
4.
J Biol Chem ; 287(35): 29861-72, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22798143

RESUMEN

The genetic mutation in Friedreich ataxia (FRDA) is a hyperexpansion of the triplet-repeat sequence GAA·TTC within the first intron of the FXN gene. Although yeast and reporter construct models for GAA·TTC triplet-repeat expansion have been reported, studies on FRDA pathogenesis and therapeutic development are limited by the availability of an appropriate cell model in which to study the mechanism of instability of the GAA·TTC triplet repeats in the human genome. Herein, induced pluripotent stem cells (iPSCs) were generated from FRDA patient fibroblasts after transduction with the four transcription factors Oct4, Sox2, Klf4, and c-Myc. These cells were differentiated into neurospheres and neuronal precursors in vitro, providing a valuable cell model for FRDA. During propagation of the iPSCs, GAA·TTC triplet repeats expanded at a rate of about two GAA·TTC triplet repeats/replication. However, GAA·TTC triplet repeats were stable in FRDA fibroblasts and neuronal stem cells. The mismatch repair enzymes MSH2, MSH3, and MSH6, implicated in repeat instability in other triplet-repeat diseases, were highly expressed in pluripotent stem cells compared with fibroblasts and neuronal stem cells and occupied FXN intron 1. In addition, shRNA silencing of MSH2 and MSH6 impeded GAA·TTC triplet-repeat expansion. A specific pyrrole-imidazole polyamide targeting GAA·TTC triplet-repeat DNA partially blocked repeat expansion by displacing MSH2 from FXN intron 1 in FRDA iPSCs. These studies suggest that in FRDA, GAA·TTC triplet-repeat instability occurs in embryonic cells and involves the highly active mismatch repair system.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Ataxia de Friedreich/metabolismo , Genoma Humano , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas de Unión a Hierro/metabolismo , Modelos Biológicos , Proteína 2 Homóloga a MutS/metabolismo , Expansión de Repetición de Trinucleótido , Animales , Diferenciación Celular/genética , Línea Celular , Fibroblastos/metabolismo , Fibroblastos/patología , Ataxia de Friedreich/genética , Ataxia de Friedreich/patología , Humanos , Células Madre Pluripotentes Inducidas/patología , Intrones/genética , Proteínas de Unión a Hierro/genética , Factor 4 Similar a Kruppel , Ratones , Proteína 2 Homóloga a MutS/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Frataxina
5.
Cell Stem Cell ; 20(1): 120-134, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-28094016

RESUMEN

During human brain development, multiple signaling pathways generate diverse cell types with varied regional identities. Here, we integrate single-cell RNA sequencing and clonal analyses to reveal lineage trees and molecular signals underlying early forebrain and mid/hindbrain cell differentiation from human embryonic stem cells (hESCs). Clustering single-cell transcriptomic data identified 41 distinct populations of progenitor, neuronal, and non-neural cells across our differentiation time course. Comparisons with primary mouse and human gene expression data demonstrated rostral and caudal progenitor and neuronal identities from early brain development. Bayesian analyses inferred a unified cell-type lineage tree that bifurcates between cortical and mid/hindbrain cell types. Two methods of clonal analyses confirmed these findings and further revealed the importance of Wnt/ß-catenin signaling in controlling this lineage decision. Together, these findings provide a rich transcriptome-based lineage map for studying human brain development and modeling developmental disorders.


Asunto(s)
Encéfalo/embriología , Linaje de la Célula , Desarrollo Embrionario , Células Madre Embrionarias Humanas/citología , Análisis de la Célula Individual/métodos , Animales , Encéfalo/metabolismo , Línea Celular , Linaje de la Célula/genética , Células Clonales , Desarrollo Embrionario/genética , Humanos , Ratones , Modelos Biológicos , Neuronas/citología , Neuronas/metabolismo , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Factores de Transcripción/metabolismo , Transcriptoma/genética , Vía de Señalización Wnt/genética
6.
J Vis Exp ; (60)2012 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-22370855

RESUMEN

Herein we present a protocol of reprogramming human adult fibroblasts into human induced pluripotent stem cells (hiPSC) using retroviral vectors encoding Oct3/4, Sox2, Klf4 and c-myc (OSKM) in the presence of sodium butyrate (1-3). We used this method to reprogram late passage (>p10) human adult fibroblasts derived from Friedreich's ataxia patient (GM03665, Coriell Repository). The reprogramming approach includes highly efficient transduction protocol using repetitive centrifugation of fibroblasts in the presence of virus-containing media. The reprogrammed hiPSC colonies were identified using live immunostaining for Tra-1-81, a surface marker of pluripotent cells, separated from non-reprogrammed fibroblasts and manually passaged (4,5). These hiPSC were then transferred to Matrigel plates and grown in feeder-free conditions, directly from the reprogramming plate. Starting from the first passage, hiPSC colonies demonstrate characteristic hES-like morphology. Using this protocol more than 70% of selected colonies can be successfully expanded and established into cell lines. The established hiPSC lines displayed characteristic pluripotency markers including surface markers TRA-1-60 and SSEA-4, as well as nuclear markers Oct3/4, Sox2 and Nanog. The protocol presented here has been established and tested using adult fibroblasts obtained from Friedreich's ataxia patients and control individuals( 6), human newborn fibroblasts, as well as human keratinocytes.


Asunto(s)
Técnicas Citológicas/métodos , Fibroblastos/citología , Células Madre Pluripotentes Inducidas/citología , Adulto , Desdiferenciación Celular/fisiología , Reprogramación Celular/fisiología , Humanos , Recién Nacido , Factor 4 Similar a Kruppel , Transducción Genética
7.
Cell Stem Cell ; 8(1): 106-18, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21211785

RESUMEN

Genomic stability is critical for the clinical use of human embryonic and induced pluripotent stem cells. We performed high-resolution SNP (single-nucleotide polymorphism) analysis on 186 pluripotent and 119 nonpluripotent samples. We report a higher frequency of subchromosomal copy number variations in pluripotent samples compared to nonpluripotent samples, with variations enriched in specific genomic regions. The distribution of these variations differed between hESCs and hiPSCs, characterized by large numbers of duplications found in a few hESC samples and moderate numbers of deletions distributed across many hiPSC samples. For hiPSCs, the reprogramming process was associated with deletions of tumor-suppressor genes, whereas time in culture was associated with duplications of oncogenic genes. We also observed duplications that arose during a differentiation protocol. Our results illustrate the dynamic nature of genomic abnormalities in pluripotent stem cells and the need for frequent genomic monitoring to assure phenotypic stability and clinical safety.


Asunto(s)
Proliferación Celular , Reprogramación Celular , Células Madre Embrionarias/citología , Dosificación de Gen , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes/citología , Diferenciación Celular , Células Cultivadas , Células Madre Embrionarias/metabolismo , Genoma Humano , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Fenotipo , Células Madre Pluripotentes/metabolismo
8.
Cell Stem Cell ; 7(5): 631-7, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-21040903

RESUMEN

The inherited neurodegenerative disease Friedreich's ataxia (FRDA) is caused by GAA⋅TTC triplet repeat hyperexpansions within the first intron of the FXN gene, encoding the mitochondrial protein frataxin. Long GAA⋅TTC repeats cause heterochromatin-mediated gene silencing and loss of frataxin in affected individuals. We report the derivation of induced pluripotent stem cells (iPSCs) from FRDA patient fibroblasts by transcription factor reprogramming. FXN gene repression is maintained in the iPSCs, as are the global gene expression signatures reflecting the human disease. GAA⋅TTC repeats uniquely in FXN in the iPSCs exhibit repeat instability similar to patient families, where they expand and/or contract with discrete changes in length between generations. The mismatch repair enzyme MSH2, implicated in repeat instability in other triplet repeat diseases, is highly expressed in pluripotent cells and occupies FXN intron 1, and shRNA silencing of MSH2 impedes repeat expansion, providing a possible molecular explanation for repeat expansion in FRDA.


Asunto(s)
Ataxia de Friedreich/genética , Células Madre Pluripotentes Inducidas , Expansión de Repetición de Trinucleótido/genética , Células Cultivadas , Expansión de las Repeticiones de ADN , Humanos , Proteínas de Unión a Hierro/genética , Inestabilidad de Microsatélites , Frataxina
9.
Cell Cycle ; 5(14): 1537-48, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16861886

RESUMEN

A polyamide-chlorambucil conjugate (1R-Chl) arrests a wide range of human cancer cell lines at the G2/M phase of the cell cycle and downregulates histone H4c gene expression. However, an siRNA against H4c mRNA causes G1/S arrest. Here, we report that 1R-Chl downregulates H4c prior to G2/M arrest. G2/M arrest is the result of extensive DNA damage by 1R-Chl, which leads to phosphorylation of H2A.X at serine 139, recruitment of the Nbs1 repair protein, and a cascade of unknown events culminating with cdc2 phosphorylation at tyrosine 15 and abolishment of cdc2 kinase activity. A control polyamide-Chl conjugate, which neither binds to the H4c gene nor has an anti-proliferative effect by itself, causes G2/M arrest when cells are treated with siRNAs specific for H3 or H4c.


Asunto(s)
Clorambucilo/farmacología , Interfase , Modelos Biológicos , Neoplasias/patología , División Celular , Línea Celular Tumoral , Proliferación Celular , Clorambucilo/uso terapéutico , Fase G2 , Regulación de la Expresión Génica/efectos de los fármacos , Histonas/antagonistas & inhibidores , Histonas/genética , Humanos , Polímeros/farmacología , Polímeros/uso terapéutico , ARN Interferente Pequeño/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA