Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nature ; 621(7978): 300-305, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37704763

RESUMEN

Crystal phase is a key factor determining the properties, and hence functions, of two-dimensional transition-metal dichalcogenides (TMDs)1,2. The TMD materials, explored for diverse applications3-8, commonly serve as templates for constructing nanomaterials3,9 and supported metal catalysts4,6-8. However, how the TMD crystal phase affects the growth of the secondary material is poorly understood, although relevant, particularly for catalyst development. In the case of Pt nanoparticles on two-dimensional MoS2 nanosheets used as electrocatalysts for the hydrogen evolution reaction7, only about two thirds of Pt nanoparticles were epitaxially grown on the MoS2 template composed of the metallic/semimetallic 1T/1T' phase but with thermodynamically stable and poorly conducting 2H phase mixed in. Here we report the production of MoS2 nanosheets with high phase purity and show that the 2H-phase templates facilitate the epitaxial growth of Pt nanoparticles, whereas the 1T' phase supports single-atomically dispersed Pt (s-Pt) atoms with Pt loading up to 10 wt%. We find that the Pt atoms in this s-Pt/1T'-MoS2 system occupy three distinct sites, with density functional theory calculations indicating for Pt atoms located atop of Mo atoms a hydrogen adsorption free energy of close to zero. This probably contributes to efficient electrocatalytic H2 evolution in acidic media, where we measure for s-Pt/1T'-MoS2 a mass activity of 85 ± 23 A [Formula: see text] at the overpotential of -50 mV and a mass-normalized exchange current density of 127 A [Formula: see text] and we see stable performance in an H-type cell and prototype proton exchange membrane electrolyser operated at room temperature. Although phase stability limitations prevent operation at high temperatures, we anticipate that 1T'-TMDs will also be effective supports for other catalysts targeting other important reactions.

2.
Angew Chem Int Ed Engl ; 62(48): e202312607, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37801612

RESUMEN

The mechanistic understanding of electrochemical CO2 reduction reaction (CO2 RR) requires a rapid and accurate characterisation of product distribution to unravel the activity and selectivity, which is yet hampered by the lack of advanced correlative approaches. Here, we present the time-resolved identification of CO2 RR products by using the synchronised electrochemistry-mass spectrometry (sEC-MS). Transients in product formation can be readily captured in relation to electrochemical conditions. Moreover, a soft ionisation (SI) strategy is developed in MS for the direct observation of CO, immune to the interference of CO2 fragments. With the sEC-MS-SI, the kinetic information, such as Tafel slopes and onset potentials, for a myriad of CO2 RR products are revealed and we show the hysteresis seen for the evolution of some species may originate from the potential-driven changes in surface coverage of intermediates. This work provides a real-time picture of the dynamic formation of CO2 RR products.

3.
Angew Chem Int Ed Engl ; 61(38): e202207580, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-35876472

RESUMEN

Redox flow batteries (RFBs) based on aqueous organic electrolytes are a promising technology for safe and cost-effective large-scale electrical energy storage. Membrane separators are a key component in RFBs, allowing fast conduction of charge-carrier ions but minimizing the cross-over of redox-active species. Here, we report the molecular engineering of amidoxime-functionalized Polymers of Intrinsic Microporosity (AO-PIMs) by tuning their polymer chain topology and pore architecture to optimize membrane ion transport functions. AO-PIM membranes are integrated with three emerging aqueous organic flow battery chemistries, and the synergetic integration of ion-selective membranes with molecular engineered organic molecules in neutral-pH electrolytes leads to significantly enhanced cycling stability.

4.
J Am Chem Soc ; 143(10): 3934-3943, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33660507

RESUMEN

The nature of anionic alkali metals in solution is traditionally thought to be "gaslike" and unperturbed. In contrast to this noninteracting picture, we present experimental and computational data herein that support ion pairing in alkalide solutions. Concentration dependent ionic conductivity, dielectric spectroscopy, and neutron scattering results are consistent with the presence of superalkali-alkalide ion pairs in solution, whose stability and properties have been further investigated by DFT calculations. Our temperature dependent alkali metal NMR measurements reveal that the dynamics of the alkalide species is both reversible and thermally activated suggesting a complicated exchange process for the ion paired species. The results of this study go beyond a picture of alkalides being a "gaslike" anion in solution and highlight the significance of the interaction of the alkalide with its complex countercation (superalkali).

5.
Nat Mater ; 18(6): 650, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31076666

RESUMEN

In the version of this Article originally published, the last sentence of the acknowledgements incorrectly read 'L.V. acknowledges the support of a Marie Skodowska-Curie fellowship (N-SHEAD)'; it should have read 'L.V. and D.S. acknowledge the support of Marie Sklodowska-Curie fellowships, N-SHEAD and S-OMMs, respectively'.

6.
Nat Mater ; 16(11): 1127-1135, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28892055

RESUMEN

Recently, there has been a drive to design and develop fully tunable metamaterials for applications ranging from new classes of sensors to superlenses among others. Although advances have been made, tuning and modulating the optical properties in real time remains a challenge. We report on the first realization of a reversible electrotunable liquid mirror based on voltage-controlled self-assembly/disassembly of 16 nm plasmonic nanoparticles at the interface between two immiscible electrolyte solutions. We show that optical properties such as reflectivity and spectral position of the absorption band can be varied in situ within ±0.5 V. This observed effect is in excellent agreement with theoretical calculations corresponding to the change in average interparticle spacing. This electrochemical fully tunable nanoplasmonic platform can be switched from a highly reflective 'mirror' to a transmissive 'window' and back again. This study opens a route towards realization of such platforms in future micro/nanoscale electrochemical cells, enabling the creation of tunable plasmonic metamaterials.

7.
Faraday Discuss ; 199: 63-73, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28475183

RESUMEN

Electrowetting-on-dielectric devices typically have operating voltages of 10-20 V. A reduction in the operating voltage could greatly reduce the energy consumption of these devices. Herein, fully reversible one-electrolyte electrowetting of a droplet on a solid metal surface is reported for the first time. A reversible change of 29° for an 800 mV step is achieved. The effects of surface roughness, electrolyte composition, electrolyte concentration and droplet composition are investigated. It was found that there is a dramatic dependence of the reversibility and hysteresis of the system on these parameters, contrary to theoretical predictions. When a 3-chloro-1-propanol droplet is used, a system with no hysteresis and a 40° change in angle are obtained.

8.
Chem Soc Rev ; 45(6): 1581-96, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26806599

RESUMEN

This tutorial review will introduce and explore fundamental and applied aspects of electrolytic interfaces incorporating nanoscale building blocks for use in novel applications such as sensors and tunable optics. In order to do this, it is important to understand the principles behind even the simplest of immiscible interfaces such as those of the liquid|liquid and solid|liquid. Qualitatively, the picture is simple however the complexity is easily compounded by the addition of electrolyte, and further compounded by the addition of more complex entities such as nanoparticles. Nevertheless combining all these components surprisingly results in an elegant solution, where the nanoparticles have the ability to self-assemble at the interface with a high level of control. Importantly, this opens up the door to the development of new types of materials with a range of applications which have only recently been exploited. Initially we begin with a description of the fundamentals related to liquid|liquid and solid|liquid interfaces both with and without electrolyte. The discussion then shifts to a description of biasing the interface by the application of an electric field. This is followed by an exploration of nanoparticle assembly and disassembly at the interface by controlling parameters such as ligand composition, charge, pH, and electric field. Finally a description of the state-of-the-art is given in terms of current applications and possible future directions. It is perhaps fair to say that these new frontiers have caused great excitement within the sensing community not only due to the simplicity of the technique but also due to the unprecedented levels of sensitivity and control.

9.
J Am Chem Soc ; 138(49): 16056-16068, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960317

RESUMEN

Although major progress has recently been achieved through ex situ methods, there is still a lack of understanding of the behavior of the active center in non-precious metal Fe-N/C catalysts under operating conditions. Utilizing nitrite, nitric oxide, and hydroxylamine as molecular probes, we show that the active site for the oxygen reduction reaction (ORR) is different under acidic and alkaline conditions. An in-depth investigation of the ORR in acid reveals a behavior which is similar to that of iron macrocyclic complexes and suggests a contribution of the metal center in the catalytic cycle. We also show that this catalyst is highly active toward nitrite and nitric oxide electroreduction under various pH values with ammonia as a significant byproduct. This study offers fundamental insight into the chemical behavior of the active site and demonstrates a possible use of these materials for nitrite and nitric oxide sensing applications or environmental nitrite destruction.

10.
ACS Catal ; 14(16): 11949-11966, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39169910

RESUMEN

This review will investigate the impact of electrochemical characterization method design choices on intrinsic catalyst activity measurements by predominantly using the oxygen reduction reaction (ORR) on supported catalysts as a model reaction. The wider use of hydrogen for transportation or electrical grid stabilization requires improvements in proton exchange membrane fuel cell (PEMFC) performance. One of the areas for improvement is the (ORR) catalyst efficiency and durability. Research and development of the traditional platinum-based catalysts have commonly been performed using rotating disk electrodes (RDE), rotating ring disk electrodes (RRDE), and membrane electrode assemblies (MEAs). However, the mass transport conditions of RDE and RRDE limit their usefulness in characterizing supported catalysts at high current densities, and MEA characterizations can be complex, lengthy, and costly. Ultramicroelectrode with a catalyst-filled cavity addresses some of these problems, but with limited success. Due to the properties discussed in this review, the recent floating electrode (FE) and the gas diffusion electrode (GDE) methods offer additional capabilities in the electrochemical characterization process. With the FE technique, the intrinsic activity of catalysts for ORR can be investigated, leading to a better understanding of the ORR mechanism through more reliable experimental data from application-relevant high-mass transport conditions. The GDEs are helpful bridging tools between RDE and MEA experiments, simplifying the fuel cell and electrolyzer manufacturing and operating optimization process.

11.
ACS Appl Energy Mater ; 7(6): 2080-2087, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38550301

RESUMEN

A hydrogen-organic hybrid flow battery (FB) has been developed using methylene blue (MB) in an aqueous acid electrolyte with a theoretical positive electrolyte energy storage capacity of 65.4 A h L-1. MB paired with the versatile H2/H+ redox couple at the negative electrode forms the H2-MB rechargeable fuel cell, with no loss in capacity (5 sig. figures) over 30 100% discharge cycles of galvanostatic cycling at 50 mA cm-2, which shows excellent stability. A peak power density of 238 mW cm-2 has also been demonstrated by utilizing 1.0 M MB electrolyte. This represents a type of scalable electrochemical energy storage system with favorable properties in terms of material cost, stability, crossover management, and energy and power density, overcoming many typical limitations of organic-based redox FBs.

12.
Phys Chem Chem Phys ; 15(12): 4329-40, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23407648

RESUMEN

An alternative approach to the rotating disk electrode (RDE) for characterising fuel cell electrocatalysts is presented. The approach combines high mass transport with a flat, uniform, and homogeneous catalyst deposition process, well suited for studying intrinsic catalyst properties at realistic operating conditions of a polymer electrolyte fuel cell (PEFC). Uniform catalyst layers were produced with loadings as low as 0.16 µgPt cm(-2) and thicknesses as low as 200 nm. Such ultra thin catalyst layers are considered advantageous to minimize internal resistances and mass transport limitations. Geometric current densities as high as 5.7 A cm(-2)Geo were experimentally achieved at a loading of 10.15 µgPt cm(-2) for the hydrogen oxidation reaction (HOR) at room temperature, which is three orders of magnitude higher than current densities achievable with the RDE. Modelling of the associated diffusion field suggests that such high performance is enabled by fast lateral diffusion within the electrode. The electrodes operate over a wide potential range with insignificant mass transport losses, allowing the study of the ORR at high overpotentials. Electrodes produced a specific current density of 31 ± 9 mA cm(-2)Spec at a potential of 0.65 V vs. RHE for the oxygen reduction reaction (ORR) and 600 ± 60 mA cm(-2)Spec for the peak potential of the HOR. The mass activity of a commercial 60 wt% Pt/C catalyst towards the ORR was found to exceed a range of literature PEFC mass activities across the entire potential range. The HOR also revealed fine structure in the limiting current range and an asymptotic current decay for potentials above 0.36 V. These characteristics are not visible with techniques limited by mass transport in aqueous media such as the RDE.

13.
ACS Appl Energy Mater ; 6(24): 12296-12306, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38155874

RESUMEN

This study introduces a simple method to produce ultralow loading catalyst-coated membrane electrodes, with an integrated carbon "nanoporous layer", for use in polymer electrolyte membrane fuel cells or other electrochemical devices. This approach allows fabrication of electrodes with loadings down to 5.2 µgPt cm-2 on the anode and cathode (total 10.4 µgPt cm-2, Pt3Zn/C catalyst) in a controlled, uniform, and reproducible manner. These layers achieve high utilization of the catalyst as measured through electrochemical surface area and mass specific activities. Electrodes composed of Pt/C, PtNi/C, Pt3Co/C, and Pt3Zn/C catalysts containing 5.2-7.1 µgPt cm-2 have been fabricated and tested. These electrodes showed an impressive performance of 111 ± 8 A mgPt-1 at 0.65 V on Pt3Co/C with a power density of 31 ± 2 kW gPt,total-1, about double that of the best previous literature electrodes under the same operating conditions. The performance appears apparently mass transport free and dominated by electrokinetics over a very wide potential range, and thus, these are ideal systems to study oxygen electrokinetics within the fuel cell environment. The improved performance is associated with reduced "contact resistance" and more specifically a reduction in the resistance to lateral current flow in the catalyst layer. Analytical expressions for the effect illuminate approaches to improve electrode design for electrochemical devices in which catalyst utilization is key.

14.
ACS Catal ; 13(10): 6661-6674, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37229434

RESUMEN

We examine the performance of a number of single-atom M-N/C electrocatalysts with a common structure in order to deconvolute the activity of the framework N/C support from the metal M-N4 sites in M-N/Cs. The formation of the N/C framework with coordinating nitrogen sites is performed using zinc as a templating agent. After the formation of the electrically conducting carbon-nitrogen metal-coordinating network, we (trans)metalate with different metals producing a range of different catalysts (Fe-N/C, Co-N/C, Ni-N/C, Sn-N/C, Sb-N/C, and Bi-N/C) without the formation of any metal particles. In these materials, the structure of the carbon/nitrogen framework remains unchanged-only the coordinated metal is substituted. We assess the performance of the subsequent catalysts in acid, near-neutral, and alkaline environments toward the oxygen reduction reaction (ORR) and ascribe and quantify the performance to a combination of metal site activity and activity of the carbon/nitrogen framework. The ORR activity of the carbon/nitrogen framework is about 1000-fold higher in alkaline than it is in acid, suggesting a change in mechanism. At 0.80 VRHE, only Fe and Co contribute ORR activity significantly beyond that provided by the carbon/nitrogen framework at all pH values studied. In acid and near-neutral pH values (pH 0.3 and 5.2, respectively), Fe shows a 30-fold improvement and Co shows a 5-fold improvement, whereas in alkaline pH (pH 13), both Fe and Co show a 7-fold improvement beyond the baseline framework activity. The site density of the single metal atom sites is estimated using the nitrite adsorption and stripping method. This method allows us to deconvolute the framework sites and metal-based active sites. The framework site density of catalysts is estimated as 7.8 × 1018 sites g-1. The metal M-N4 site densities in Fe-N/C and Co-N/C are 9.4 × 1018 sites-1 and 4.8 × 1018 sites g-1, respectively.

15.
ChemSusChem ; 16(18): e202300303, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37205628

RESUMEN

There are a number of critical requirements for electrolytes in aqueous redox flow batteries. This paper reviews organic molecules that have been used as the redox-active electrolyte for the positive cell reaction in aqueous redox flow batteries. These organic compounds are centred around different organic redox-active moieties such as the aminoxyl radical (TEMPO and N-hydroxyphthalimide), carbonyl (quinones and biphenols), amine (e. g., indigo carmine), ether and thioether (e. g., thianthrene) groups. We consider the key metrics that can be used to assess their performance: redox potential, operating pH, solubility, redox kinetics, diffusivity, stability, and cost. We develop a new figure of merit - the theoretical intrinsic power density - which combines the first four of the aforementioned metrics to allow ranking of different redox couples on just one side of the battery. The organic electrolytes show theoretical intrinsic power densities which are 2-100 times larger than that of the VO2+ /VO2 + couple, with TEMPO-derivatives showing the highest performance. Finally, we survey organic positive electrolytes in the literature on the basis of their redox-active moieties and the aforementioned figure of merit.

16.
Adv Mater ; 35(14): e2211022, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36739474

RESUMEN

Atomic Fe in N-doped carbon (FeNC) electrocatalysts for oxygen (O2 ) reduction at the cathode of proton exchange membrane fuel cells are the most promising alternative to platinum-group-metal catalysts. Despite recent progress on atomic FeNC O2  reduction, their controlled synthesis and stability for practical applications remain challenging. A two-step synthesis approach has recently led to significant advances in terms of Fe-loading and mass activity; however, the Fe utilization remains low owing to the difficulty of building scaffolds with sufficient porosity that electrochemically exposes the active sites. Herein, this issue is addressed by coordinating Fe in a highly porous nitrogen-doped carbon support (≈3295 m2  g-1 ), prepared by pyrolysis of inexpensive 2,4,6-triaminopyrimidine and a Mg2+ salt active site template and porogen. Upon Fe coordination, a high electrochemical active site density of 2.54 × 1019  sites gFeNC -1  and a record 52% FeNx electrochemical utilization based on in situ nitrite stripping are achieved. The Fe single atoms are characterized pre- and post-electrochemical accelerated stress testing by aberration-corrected high-angle annular dark field scanning transmission electron microscopy, showing no Fe clustering. Moreover, ex situ X-ray absorption spectroscopy and low-temperature Mössbauer spectroscopy suggest the presence of penta-coordinated Fe sites, which are further studied by density functional theory calculations.

17.
Adv Mater ; 35(12): e2210098, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36634684

RESUMEN

Redox flow batteries (RFBs) have great potential for long-duration grid-scale energy storage. Ion-conducting membranes are a crucial component in RFBs, allowing charge-carrying ions to transport while preventing the cross-mixing of redox couples. Commercial Nafion membranes are widely used in RFBs, but their unsatisfactory ionic and molecular selectivity, as well as high costs, limit the performance and the widespread deployment of this technology. To extend the longevity and reduce the cost of RFB systems, inexpensive ion-selective membranes that concurrently deliver low ionic resistance and high selectivity toward redox-active species are highly desired. Here, high-performance RFB membranes are fabricated from blends of carboxylate- and amidoxime-functionalized polymers of intrinsic microporosity, which exploit the beneficial properties of both polymers. The enthalpy-driven formation of cohesive interchain interactions, including hydrogen bonds and salt bridges, facilitates the microscopic miscibility of the blends, while ionizable functional groups within the sub-nanometer pores allow optimization of membrane ion-transport functions. The resulting microporous membranes demonstrate fast cation conduction with low crossover of redox-active molecular species, enabling improved power ratings and reduced capacity fade in aqueous RFBs using anthraquinone and ferrocyanide as redox couples.

18.
Adv Sci (Weinh) ; 10(20): e2206888, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37178400

RESUMEN

Redox flow batteries (RFBs) are promising for large-scale long-duration energy storage owing to their inherent safety, decoupled power and energy, high efficiency, and longevity. Membranes constitute an important component that affects mass transport processes in RFBs, including ion transport, redox-species crossover, and the net volumetric transfer of supporting electrolytes. Hydrophilic microporous polymers, such as polymers of intrinsic microporosity (PIM), are demonstrated as next-generation ion-selective membranes in RFBs. However, the crossover of redox species and water migration through membranes are remaining challenges for battery longevity. Here, a facile strategy is reported for regulating mass transport and enhancing battery cycling stability by employing thin film composite (TFC) membranes prepared from a PIM polymer with optimized selective-layer thickness. Integration of these PIM-based TFC membranes with a variety of redox chemistries allows for the screening of suitable RFB systems that display high compatibility between membrane and redox couples, affording long-life operation with minimal capacity fade. Thickness optimization of TFC membranes further improves cycling performance and significantly restricts water transfer in selected RFB systems.

20.
ACS Catal ; 12(10): 6180-6190, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35633901

RESUMEN

The mechanism and dynamics of the CO2 reduction reaction (CO2RR) remain poorly understood, which is largely caused by mass transport limitations and lack of time-correlated product analysis tools. In this work, a custom-built gas accessible membrane electrode (GAME) system is used to comparatively assess the CO2RR behavior of Au and Au-Cu catalysts. The platform achieves high reduction currents (∼ - 50 mA cm-2 at 1.1 V vs RHE) by creating a three-phase boundary interface equipped with an efficient gas-circulation pathway, facilitating rapid mass transport of CO2. The GAME system can also be easily coupled with many other analytical techniques as exemplified by mass spectrometry (MS) and localized ultramicroelectrode (UME) voltammetry to enable real-time and in situ product characterization in the gas and liquid phases, respectively. The gaseous product distribution is explicitly and quantitatively elucidated with high time resolution (on the scale of seconds), allowing for the independent assessment of Tafel slope estimates for the hydrogen (159/168 mV decade-1), ethene (160/170 mV decade-1), and methane (96/100 mV decade-1) evolution reactions. Moreover, the UME is used to simultaneously measure the local pH shift during CO2RR and assess the production of liquid phase species including formate. A positive shift of 0.8 pH unit is observed at a current density of -11 mA cm-2 during the CO2RR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA