Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 311(4): H1063-H1071, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27521419

RESUMEN

Endothelial cells (EC) respond to mechanical forces such as shear stress in a variety of ways, one of which is cytoskeletal realignment in the direction of flow. Our earlier studies implicated the extracellular matrix protein fibronectin in mechanosensory signaling to ECs in intact arterioles, via a signaling pathway dependent on the heparin-binding region of the first type III repeat of fibrillar fibronectin (FNIII1H). Here we test the hypothesis that FNIII1H is required for EC stress fiber realignment under flow. Human umbilical vein ECs (HUVECs) exposed to defined flow conditions were used as a well-characterized model of this stress fiber alignment response. Our results directly implicate FNIII1H in realignment of stress fibers in HUVECs and, importantly, show that the matricryptic heparin-binding RWRPK sequence located in FNIII1 is required for the response. Furthermore, we show that flow-mediated stress fiber realignment in ECs adhered via α5ß1-integrin-specific ligands does not occur in the absence of FHIII1H, whereas, in contrast, αvß3-integrin-mediated stress fiber realignment under flow does not require FNIII1H. Our findings thus indicate that there are two separate mechanosignaling pathways mediating the alignment of stress fibers after exposure of ECs to flow, one dependent on αvß3-integrins and one dependent on FNIII1H. This study strongly supports the conclusion that the RWRPK region of FNIII1H may have broad capability as a mechanosensory signaling site.


Asunto(s)
Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Mecanotransducción Celular , Estrés Mecánico , Células Endoteliales/fisiología , Heparina , Células Endoteliales de la Vena Umbilical Humana , Humanos , Integrina alfa5beta1/metabolismo , Integrina alfaVbeta3/metabolismo , Microscopía Fluorescente
2.
J Biol Chem ; 289(47): 33054-65, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25320085

RESUMEN

Disruption of endothelial cell-cell contact is a key event in many cardiovascular diseases and a characteristic of pathologically activated vascular endothelium. The CCM (cerebral cavernous malformation) family of proteins (KRIT1 (Krev-interaction trapped 1), PDCD10, and CCM2) are critical regulators of endothelial cell-cell contact and vascular homeostasis. Here we show novel regulation of vascular endothelial growth factor (VEGF) signaling in KRIT1-depleted endothelial cells. Loss of KRIT1 and PDCD10, but not CCM2, increases nuclear ß-catenin signaling and up-regulates VEGF-A protein expression. In KRIT1-depleted cells, increased VEGF-A levels led to increased VEGF receptor 2 (VEGFR2) activation and subsequent alteration of cytoskeletal organization, migration, and barrier function and to in vivo endothelial permeability in KRIT1-deficient animals. VEGFR2 activation also increases ß-catenin phosphorylation but is only partially responsible for KRIT1 depletion-dependent disruption of cell-cell contacts. Thus, VEGF signaling contributes to modifying endothelial function in KRIT1-deficient cells and microvessel permeability in Krit1(+/-) mice; however, VEGF signaling is likely not the only contributor to disrupted endothelial cell-cell contacts in the absence of KRIT1.


Asunto(s)
Células Endoteliales/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Western Blotting , Permeabilidad Capilar , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Bovinos , Comunicación Celular , Permeabilidad de la Membrana Celular , Células Cultivadas , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Proteína KRIT1 , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Fosforilación , Proteínas Proto-Oncogénicas/genética , Interferencia de ARN , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , beta Catenina/metabolismo
3.
Am J Physiol Cell Physiol ; 301(4): C804-13, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21653902

RESUMEN

Activated neutrophils interacting with the vessel wall can alter vascular permeability to macromolecules such as albumin via release of various secretion products that induce changes in the endothelial monolayer. In the current work we used cremaster microvessels of anesthetized mice to show that, in addition to this paracrine mechanism, leukocyte ligation of endothelial ICAM-1 directly activates endothelial cell (EC) signaling, altering EC permeability to albumin [i.e., solute permeability (P(s))]. We show that antibody cross-linking of surface ICAM-1 in intact microvessels is sufficient to increase P(s) even in the absence of interacting leukocytes. Unstimulated arterioles do not support leukocyte-EC interactions, but despite this, antibody ligation of ICAM-1 in these vessels induced a twofold increase in P(s). Similarly, in venules that were depleted of interacting neutrophils, P(s) was decreased to below resting levels and was restored by ligation of ICAM-1. Use of function-blocking antibodies to separately block leukocyte rolling or adhesion under unstimulated or TNF-α-activated conditions established that both rolling and adhered leukocytes contribute to P(s) regulation in situ. Both rolling and adhesion activated EC-dependent signaling mechanisms that increased P(s). ICAM-1 ligation with primary antibody alone or primary followed by secondary antibodies showed that regulation of P(s) is directly dependent on the degree of ICAM-1 clustering. Under physiological versus inflamed conditions, respectively, this ICAM-1 clustering-dependent regulation of P(s) switches from PKC dependent and Src independent to Src dependent and PKC independent. This study thus identifies a new mechanism by which antiadhesion treatment may constitute a potential therapy for tissue edema.


Asunto(s)
Albúminas/fisiología , Permeabilidad Capilar/fisiología , Molécula 1 de Adhesión Intercelular/metabolismo , Rodamiento de Leucocito/fisiología , Leucocitos/fisiología , Animales , Adhesión Celular , Regulación de la Expresión Génica , Leucocitos/citología , Ratones , Ratones Noqueados , Receptores del Factor de Necrosis Tumoral/genética , Receptores del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
4.
Am J Physiol Heart Circ Physiol ; 290(1): H474-80, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16126813

RESUMEN

In microvessels, acute inflammation is typified by an increase in leukocyte-endothelial cell interactions, culminating in leukocyte transmigration into the tissue, and increased permeability to water and solutes, resulting in tissue edema. The goal of this study was to establish a method to quantify solute permeability (P(s)) changes in microvessels in intact predominantly blood-perfused networks in which leukocyte transmigratory behavior could be precisely described using established paradigms. We used intravital confocal microscopy to measure solute (BSA) flux across microvessel walls, hence P(s). A quantitative fluorescence approach (Huxley VH, Curry FE, and Adamson RH. Am J Physiol Heart Circ Physiol 252: H188-H197, 1987) was adapted to the imaged confocal tissue slice in which the fluorescent source volume and source surface area of the microvessel were restricted to the region of vessel that was contained within the imaged confocal tissue section. P(s) measurements were made in intact cremaster muscle microvasculature of anesthetized mice and compared with measurements of P(s) made in isolated rat skeletal muscle microvessels. Mouse arteriolar P(s) was 9.9 +/- 1.1 x 10(-7) cm/s (n = 16), which was not different from 8.4 +/- 1.3 x 10(-7) cm/s (n = 6) in rat arterioles. Values in venules were significantly (P < 0.05) higher: 44.4 +/- 7.9 x 10(-7) cm/s (n = 14) in mice and 25.0 +/- 3.7 x 10(-7) cm/s in rats. Convective coupling was estimated to contribute <10% to the measured P(s) in both microvessel types and both animal models. We conclude that this approach provides an appropriate quantification of P(s) in the intact microvasculature and that arteriolar P(s), while lower than in venules, is nevertheless consistent with arterioles being a significant source of interstitial protein.


Asunto(s)
Arteriolas/fisiología , Permeabilidad Capilar/fisiología , Colorantes Fluorescentes , Músculo Esquelético/irrigación sanguínea , Albúmina Sérica Bovina , Vénulas/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Microcirculación , Microscopía Confocal/métodos , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA