Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int Endod J ; 53(6): 859-870, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32068891

RESUMEN

AIM: To characterize a lipopolysaccharide (LPS)-treated dentine tissue model (LPS dentine) to analyse the efficacy of polycationic chitosan nanoparticles (CSnp) and/or dexamethasone conjugate chitosan nanoparticles (Dex-CSnp) on the viability/differentiation potential of stem cells from apical papilla (SCAP) when exposed to LPS dentine. A further aim was to understand the effect of macrophage-dependent inflammation on SCAP migration in the presence of LPS dentine. METHODOLOGY: A total of 88 dentine slabs were used. TOF-SIMS analysis was performed amongst the LPS-treated and untreated dentine groups (n = 2/group). The study was conducted using four dentine groups: no treatment (control); LPS treatment only; LPS treatment followed by CSnp conditioning; and LPS treatment followed by Dex-CSnp conditioning groups. SCAP adherence, viability, differentiation and biomineralization potential on dentine from different groups were studied using fluorescent and scanning electron microscopy. Inflammation by macrophages in response to LPS dentine was quantified, and effect on SCAP migration was analysed. Statistical analysis was performed using Student's t-test with a significance level of P < 0.05. RESULT: TOF-SIMS analysis confirmed LPS contamination. LPS dentine affected SCAP viability but not adherence to dentine (P < 0.001). Conditioning of LPS dentine with either nanoparticles improved SCAP viability (P < 0.01) and rescued other LPS related adverse effects on SCAPs, such as F-actin disruption, decrease in differentiation/biomineralization potential. IL-6 produced by macrophages in response to LPS-treated dentine impeded SCAP migration (P < 0.001), diminished on CSnp and Dex-CSnp conditioning groups (P < 0.01). CONCLUSION: This study developed an LPS-dentine model and highlighted the ability of CSnp and Dex-CSnp to promote stem cell viability, migration, differentiation potential and reduce inflammation, providing an environment conducive for tissue regeneration/repair.


Asunto(s)
Quitosano , Nanopartículas , Diferenciación Celular , Supervivencia Celular , Papila Dental , Humanos , Células Madre
2.
Int J Obes (Lond) ; 41(1): 137-148, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27297797

RESUMEN

BACKGROUND/OBJECTIVES: Myostatin (Mstn) has a pivotal role in glucose and lipid metabolism. Mstn deficiency leads to the increased browning of white adipose tissue (WAT), which results in the increased energy expenditure and protection against diet-induced obesity and insulin resistance. In this study, we investigated the molecular mechanism(s) through which Mstn regulates browning of white adipocytes. METHODS: Quantitative molecular analyses were performed to assess Mstn regulation of miR-34a and Fndc5 expression. miR-34a was overexpressed and repressed to investigate miR-34a regulation of Fndc5. Luciferase reporter analysis verified direct binding between miR-34a and the Fndc5 3'-untranslated region (UTR). The browning phenotype of Mstn-/- adipocytes was assessed through the analysis of brown fat marker gene expression, mitochondrial function and infrared thermography. The role of miR-34a and Fndc5 in this browning phenotype was verified through antibody-mediated neutralization of FNDC5, knockdown of Fndc5 by small interfering RNA and through miR-34a gain-of-function and loss-of-function experiments. RESULTS: Mstn treatment of myoblasts inhibited Fndc5 expression, whereas the loss of Mstn increased Fndc5 levels in muscles and in circulation. Mstn inhibition of Fndc5 is miR-34a dependent. Mstn treatment of C2C12 myoblasts upregulated miR-34a expression, whereas reduced miR-34a expression was noted in Mstn-/- muscle and WAT. Subsequent overexpression of miR-34a inhibited Fndc5 expression, whereas blockade of miR-34a increased Fndc5 expression in myoblasts. Reporter analysis revealed that miR-34a directly suppresses Fndc5 expression through a miR-34a-specific binding site within the Fndc5 3'UTR. Importantly, Mstn-mediated inhibition of Fndc5 was blocked upon miR-34a inhibition. Mstn-/- adipocytes showed reduced miR-34a, enhanced Fndc5 expression and increased thermogenic gene expression, which was reversed upon either neutralization of Fndc5 or Fndc5 knockdown. In agreement, Mstn-/- adipocytes have increased mitochondria, improved mitochondrial function and increased heat production. CONCLUSIONS: Mstn regulates Fndc5/Irisin expression and secretion through a novel miR-34a-dependent post-transcriptional mechanism. Loss of Mstn in mice leads to the increased Fndc5/Irisin expression, which contributes to the browning of white adipocytes.


Asunto(s)
Adipocitos Blancos/metabolismo , Tejido Adiposo Pardo/metabolismo , Fibronectinas/metabolismo , Regulación de la Expresión Génica , MicroARNs , Miostatina/metabolismo , Transducción de Señal , Células 3T3-L1 , Animales , Western Blotting , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Fibronectinas/biosíntesis , Fibronectinas/genética , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/metabolismo , Termogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA