Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 622(7982): 359-366, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37758944

RESUMEN

The assembly of cortical circuits involves the generation and migration of interneurons from the ventral to the dorsal forebrain1-3, which has been challenging to study at inaccessible stages of late gestation and early postnatal human development4. Autism spectrum disorder and other neurodevelopmental disorders (NDDs) have been associated with abnormal cortical interneuron development5, but which of these NDD genes affect interneuron generation and migration, and how they mediate these effects remains unknown. We previously developed a platform to study interneuron development and migration in subpallial organoids and forebrain assembloids6. Here we integrate assembloids with CRISPR screening to investigate the involvement of 425 NDD genes in human interneuron development. The first screen aimed at interneuron generation revealed 13 candidate genes, including CSDE1 and SMAD4. We subsequently conducted an interneuron migration screen in more than 1,000 forebrain assembloids that identified 33 candidate genes, including cytoskeleton-related genes and the endoplasmic reticulum-related gene LNPK. We discovered that, during interneuron migration, the endoplasmic reticulum is displaced along the leading neuronal branch before nuclear translocation. LNPK deletion interfered with this endoplasmic reticulum displacement and resulted in abnormal migration. These results highlight the power of this CRISPR-assembloid platform to systematically map NDD genes onto human development and reveal disease mechanisms.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Trastornos del Neurodesarrollo , Femenino , Humanos , Recién Nacido , Embarazo , Movimiento Celular/genética , Sistemas CRISPR-Cas/genética , Interneuronas/citología , Interneuronas/metabolismo , Interneuronas/patología , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Organoides/citología , Organoides/embriología , Organoides/crecimiento & desarrollo , Organoides/metabolismo , Organoides/patología , Retículo Endoplásmico/metabolismo , Prosencéfalo/citología , Prosencéfalo/embriología , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/metabolismo , Prosencéfalo/patología , Transporte Activo de Núcleo Celular
2.
Nature ; 610(7931): 319-326, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36224417

RESUMEN

Self-organizing neural organoids represent a promising in vitro platform with which to model human development and disease1-5. However, organoids lack the connectivity that exists in vivo, which limits maturation and makes integration with other circuits that control behaviour impossible. Here we show that human stem cell-derived cortical organoids transplanted into the somatosensory cortex of newborn athymic rats develop mature cell types that integrate into sensory and motivation-related circuits. MRI reveals post-transplantation organoid growth across multiple stem cell lines and animals, whereas single-nucleus profiling shows progression of corticogenesis and the emergence of activity-dependent transcriptional programs. Indeed, transplanted cortical neurons display more complex morphological, synaptic and intrinsic membrane properties than their in vitro counterparts, which enables the discovery of defects in neurons derived from individuals with Timothy syndrome. Anatomical and functional tracings show that transplanted organoids receive thalamocortical and corticocortical inputs, and in vivo recordings of neural activity demonstrate that these inputs can produce sensory responses in human cells. Finally, cortical organoids extend axons throughout the rat brain and their optogenetic activation can drive reward-seeking behaviour. Thus, transplanted human cortical neurons mature and engage host circuits that control behaviour. We anticipate that this approach will be useful for detecting circuit-level phenotypes in patient-derived cells that cannot otherwise be uncovered.


Asunto(s)
Vías Nerviosas , Organoides , Animales , Animales Recién Nacidos , Trastorno Autístico , Humanos , Síndrome de QT Prolongado , Motivación , Neuronas/fisiología , Optogenética , Organoides/citología , Organoides/inervación , Organoides/trasplante , Ratas , Recompensa , Corteza Somatosensorial/citología , Corteza Somatosensorial/fisiología , Células Madre/citología , Sindactilia
3.
bioRxiv ; 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37398073

RESUMEN

Morphogens choreograph the generation of remarkable cellular diversity in the developing nervous system. Differentiation of stem cells toward particular neural cell fates in vitro often relies upon combinatorial modulation of these signaling pathways. However, the lack of a systematic approach to understand morphogen-directed differentiation has precluded the generation of many neural cell populations, and knowledge of the general principles of regional specification remain in-complete. Here, we developed an arrayed screen of 14 morphogen modulators in human neural organoids cultured for over 70 days. Leveraging advances in multiplexed RNA sequencing technology and annotated single cell references of the human fetal brain we discovered that this screening approach generated considerable regional and cell type diversity across the neural axis. By deconvoluting morphogen-cell type relationships, we extracted design principles of brain region specification, including critical morphogen timing windows and combinatorics yielding an array of neurons with distinct neuro-transmitter identities. Tuning GABAergic neural subtype diversity unexpectedly led to the derivation of primate-specific interneurons. Taken together, this serves as a platform towards an in vitro morphogen atlas of human neural cell differentiation that will bring insights into human development, evolution, and disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA