Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Mol Sci ; 21(7)2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32260203

RESUMEN

Epilepsy is a devastating neurological condition exhibited by repeated spontaneous and unpredictable seizures afflicting around 70 million people globally. The basic pathophysiology of epileptic seizures is still elusive, reflecting an extensive need for further research. Developing a novel animal model is crucial in understanding disease mechanisms as well as in assessing the therapeutic target. Most of the pre-clinical epilepsy research has been focused on rodents. Nevertheless, zebrafish disease models are relevant to human disease pathophysiology hence are gaining increased attention nowadays. The current study for the very first time developed a pilocarpine-induced chronic seizure-like condition in adult zebrafish and investigated the modulation in several neuroinflammatory genes and neurotransmitters after pilocarpine exposures. Seizure score analysis suggests that compared to a single dose, repeated dose pilocarpine produces chronic seizure-like effects maintaining an average seizure score of above 2 each day for a minimum of 10 days. Compared to the single dose pilocarpine treated group, there was increased mRNA expression of HMGB1, TLR4, TNF-α, IL-1, BDNF, CREB-1, and NPY; whereas decreased expression of NF-κB was upon the repeated dose of pilocarpine administration. In addition, the epileptic group demonstrates modulation in neurotransmitters levels such as GABA, Glutamate, and Acetylcholine. Moreover, proteomic profiling of the zebrafish brain from the normal and epileptic groups from LCMS/MS quantification detected 77 and 13 proteins in the normal and epileptic group respectively. Summing up, the current investigation depicted that chemically induced seizures in zebrafish demonstrated behavioral and molecular alterations similar to classical rodent seizure models suggesting the usability of adult zebrafish as a robust model to investigate epileptic seizures.


Asunto(s)
Redes Reguladoras de Genes/efectos de los fármacos , Pilocarpina/efectos adversos , Proteómica/métodos , Convulsiones/genética , Animales , Cromatografía Liquida , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , FN-kappa B/genética , Neurotransmisores/metabolismo , Pilocarpina/administración & dosificación , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Espectrometría de Masas en Tándem , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
Photochem Photobiol Sci ; 18(10): 2509-2520, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31432859

RESUMEN

We investigated changes in behavior, physiology and selected brain regions during the development of vernal migration and reproduction phenotypes in migratory redheaded buntings. We monitored 24 h activity-rest pattern and measured food intake, fat deposition, and body mass of buntings exposed for 12 weeks to short (SP, 8L : 16D) and long (LP, 13L : 11D) photoperiods at 22 ± 2 °C temperature. Under LP, not SP, buntings exhibited a photostimulated spring migration phenotype (hyperphagia, fat deposition and body mass gain). However, there were sex differences in the development of vernal migration, as shown by faster and earlier induction of Zugunruhe (nocturnal migratory restlessness) in males than in females. In the next experiment, increasing photoperiods over 12 weeks following the vernal equinox induced behavioural and physiological changes associated with vernal migration phenotypes in both male and female buntings, but in a sex-dependent manner. In a subsequent experiment over 8 weeks corresponding to the spring migration period we found an increased expression of CART, not NPY, in INc, and decreased expression of GnRH-I in POA in the brain by week 6 of the observation under increasing photoperiods. There was also an increased expression of doublecortin (a marker of neuronal incorporation) in the olfactory bulb and song control nuclei (Area X and HVC, higher vocal centre) in male birds. These results demonstrate changes in the brain peptides and neuronal recruitment along with changes in the behaviour and physiology, and give insights into the concurrent photoperiodic induction of the seasonal response at multiple levels in migratory songbirds.


Asunto(s)
Migración Animal/fisiología , Neuronas/metabolismo , Passeriformes/fisiología , Animales , Femenino , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fotoperiodo , Estaciones del Año
3.
Int J Mol Sci ; 19(3)2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29543761

RESUMEN

Metabolic epilepsy is a metabolic abnormality which is associated with an increased risk of epilepsy development in affected individuals. Commonly used antiepileptic drugs are typically ineffective against metabolic epilepsy as they do not address its root cause. Presently, there is no review available which summarizes all the treatment options for metabolic epilepsy. Thus, we systematically reviewed literature which reported on the treatment, therapy and management of metabolic epilepsy from four databases, namely PubMed, Springer, Scopus and ScienceDirect. After applying our inclusion and exclusion criteria as per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we reviewed a total of 43 articles. Based on the reviewed articles, we summarized the methods used for the treatment, therapy and management of metabolic epilepsy. These methods were tailored to address the root causes of the metabolic disturbances rather than targeting the epilepsy phenotype alone. Diet modification and dietary supplementation, alone or in combination with antiepileptic drugs, are used in tackling the different types of metabolic epilepsy. Identification, treatment, therapy and management of the underlying metabolic derangements can improve behavior, cognitive function and reduce seizure frequency and/or severity in patients.


Asunto(s)
Encefalopatías Metabólicas/terapia , Epilepsia/terapia , Anticonvulsivantes/uso terapéutico , Encefalopatías Metabólicas/etiología , Encefalopatías Metabólicas/fisiopatología , Dietoterapia , Epilepsia/etiología , Epilepsia/fisiopatología , Humanos
4.
Saudi Pharm J ; 25(2): 196-205, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28344469

RESUMEN

Swietenia macrophylla (SM) is a medicinally important plant found in tropical and subtropical regions of the world. The ethyl acetate fraction of the seeds of S. macrophylla (SMEAF) is reported to exhibit potent anticancer, antitumor, anti-inflammatory and antifeedant activities. Till date, there have been no studies reported on the acute oral toxicity profile of the ethyl acetate fraction of the seeds of SM. The objective of the present study was to determine the acute toxicity of SMEAF and evaluate the in-vitro neuroprotective activity of SMEAF using primary neuronal cell cultures. In acute oral toxicity study, the SMEAF did not produce any lethal signs of morbidity and mortality. Histo-pathological findings, support the safety of SMEAF, as there were no significant changes observed in any of the parameters studied. Based on the results obtained in MTT assay, we infer that SMEAF has a significant neuroprotective effect, as it increased the cell viability and exhibited protection to the neuronal cells against TBHP induced oxidative stress. Thus, SMEAF can be suggested for use in the development of herbal drug formulations with neuroprotective potential.

5.
Gen Comp Endocrinol ; 220: 46-54, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24932714

RESUMEN

Day length regulates seasonal plasticity connected with reproduction in birds. Rhythmic pineal melatonin secretion is a reliable indicator of the night length, hence day length. Removal of rhythmic melatonin secretion by exposure to constant bright light (LLbright) or by pinealectomy renders several species of songbirds including Indian weaver bird (Ploceus philippinus) arrhythmic. Present study investigated whether rhythmic melatonin is involved in the regulation of key reproductive neuropeptides (GnRH I and GnIH) and reproduction linked neural changes, viz. song control nuclei, in Indian weaver birds. Two experiments were performed using birds in an arrhythmic condition with low (under LLbright) or no (in the absence of pineal gland) endogenous melatonin. In experiment I, three groups of birds (n=5 each) entrained to 12L:12D were exposed to LLbright (25lux) for two weeks. Beginning on day 15 of LLbright, a control group received vehicle for 16h and two treatment groups were given melatonin in drinking water for 8h or 16h. In experiment II, one group of sham-operated and three groups of pinealectomized birds (n=5 each) entrained to 12L:12D were exposed to constant dim light (LLdim, 0.5lux). Beginning on day 15 of LLdim, three groups received similar treatment as in experiment I. Birds were perfused after thirty cycles of the melatonin treatment, and brain sections were immunohistochemically double-labeled for GnRH I and GnIH or Nissl stained. Activity was recorded throughout the experiments, while body mass and testes were measured at the beginning and end of the experiment. Birds were synchronized with melatonin cycles and measured the duration of melatonin as "night". Pinealectomized birds that received 16h of melatonin had significantly higher GnIH-ir cells than those received 8h melatonin; there was no difference in the GnRH I immunoreactivity between two treatment groups however. Intact birds that received long duration melatonin cycles exhibited small song control nuclei, specifically the high vocal center (HVC) and the robust nucleus of the arcopallium (RA), while birds that received short duration melatonin or no melatonin exhibited large HVC and RA. Thus, melatonin possibly regulates seasonal reproduction via GnIH secretion, and also controls seasonal neuroplasticity in the song control system in songbirds.


Asunto(s)
Melatonina/metabolismo , Estaciones del Año , Animales , Melatonina/fisiología , Pájaros Cantores/fisiología
6.
Cell Tissue Res ; 354(2): 551-62, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23797336

RESUMEN

This study investigated the distribution of neuropeptide Y (NPY) in the brain of the night-migratory redheaded bunting (Emberiza bruniceps). We first cloned the 275-bp NPY gene in buntings, with ≥95% homology with known sequences from other birds. The deduced peptide sequence contained all conserved 36 amino acids chain of the mature NPY peptide, but lacked 6 amino acids that form the NPY signal peptide. Using digosigenin-labeled riboprobe prepared from the cloned sequence, the brain cells that synthesize NPY were identified by in-situ hybridization. The NPY peptide containing cell bodies and terminals (fibers) were localized by immunocytochemistry. NPY mRNA and peptide were widespread throughout the bunting brain. This included predominant pallial and sub-pallial areas (cortex piriformis, cortex prepiriformis, hyperpallium apicale, hippocampus, globus pallidus) and thalamic and hypothalamic nuclei (organum vasculosum laminae terminalis, nucleus (n.) dorsolateralis anterior thalami, n. rotundus, n. infundibularis) including the median eminence and hind brain (n. pretectalis, n. opticus basalis, n. reticularis pontis caudalis pars gigantocellularis). The important structures with only NPY-immunoreactive fibers included the olfactory bulb, medial and lateral septal areas, medial preoptic nucleus, medial suprachiasmatic nucleus, paraventricular nucleus, ventromedial hypothalamic nucleus, optic tectum, and ventro-lateral geniculate nucleus. These results demonstrate that NPY is possibly involved in the regulation of several physiological functions (e.g. daily timing feeding, and reproduction) in the migratory bunting.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/ultraestructura , Neuropéptido Y/análisis , Passeriformes/metabolismo , ARN Mensajero/análisis , Secuencia de Aminoácidos , Migración Animal , Animales , Encéfalo/citología , Inmunohistoquímica , Datos de Secuencia Molecular , Neuropéptido Y/genética , Passeriformes/genética , ARN Mensajero/genética
7.
Artículo en Inglés | MEDLINE | ID: mdl-37100105

RESUMEN

Globally around 24 million elderly population are dealing with dementia, and this pathological characteristic is commonly seen in people suffering from Alzheimer's disease (AD). Despite having multiple treatment options that can mitigate AD symptoms, there is an imperative call to advance our understanding of the disease pathogenesis to unfold disease-modifying treatments/therapies. To explore the driving mechanisms of AD development, we stretch out further to study time-dependant changes after Okadaic acid (OKA)-induced AD-like conditions in zebrafish. We evaluated the pharmacodynamics of OKA at two-time points, i.e., after 4-days and 10-days exposure to zebrafish. T-Maze was utilized to observe the learning and cognitive behaviour, and inflammatory gene expressions such as 5-Lox, Gfap, Actin, APP, and Mapt were performed in zebrafish brains. To scoop everything out from the brain tissue, protein profiling was performed using LCMS/MS. Both time course OKA-induced AD models have shown significant memory impairment, as evident from T-Maze. Gene expression studies of both groups have reported an overexpression of 5-Lox, GFAP, Actin, APP, and OKA 10D group has shown remarkable upregulation of Mapt in zebrafish brains. In the case of protein expression, the heatmap suggested an important role of some common proteins identified in both groups, which can be explored further to investigate their mechanism in OKA-induced AD pathology. Presently, the preclinical models available to understand AD-like conditions are not completely understood. Hence, utilizing OKA in the zebrafish model can be of great importance in understanding the pathology of AD progression and as a screening tool for drug discovery.


Asunto(s)
Enfermedad de Alzheimer , Anciano , Animales , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Pez Cebra/metabolismo , Proteómica , Actinas/metabolismo , Encéfalo/metabolismo , Ácido Ocadaico/efectos adversos , Ácido Ocadaico/metabolismo , Genómica , Modelos Animales de Enfermedad
8.
Biomed Pharmacother ; 165: 115102, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37406510

RESUMEN

Sleep is an essential biological phase of our daily life cycle and is necessary for maintaining homeostasis, alertness, metabolism, cognition, and other key functions across the animal kingdom. Dysfunctional sleep leads to deleterious effects on health, mood, and cognition, including memory deficits and an increased risk of diabetes, stroke, and neurological disorders. Sleep is regulated by several brain neuronal circuits, neuromodulators, and neurotransmitters, where cannabinoids have been increasingly found to play a part in its modulation. Cannabinoids, a group of lipid metabolites, are regulatory molecules that bind mainly to cannabinoid receptors (CB1 and CB2). Much evidence supports the role of cannabinoid receptors in the modulation of sleep, where their alteration exhibits sleep-promoting effects, including an increase in non-rapid-eye movement sleep and a reduction in sleep latency. However, the pharmacological alteration of CB1 receptors is associated with adverse psychotropic effects, which are not exhibited in CB2 receptor alteration. Hence, selective alteration of CB2 receptors is also of clinical importance, where it could potentially be used in treating sleep disorders. Thus, it is crucial to understand the neurobiological basis of cannabinoids in sleep physiology. In this review article, the alteration of the endocannabinoid system by various cannabinoids and their respective effects on the sleep-wake cycle are discussed based on recent findings. The mechanisms of the cannabinoid receptors on sleep and wakefulness are also explored for their clinical implications and potential therapeutic use on sleep disorders.


Asunto(s)
Cannabinoides , Trastornos del Sueño-Vigilia , Animales , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Sueño , Endocannabinoides/farmacología , Receptores de Cannabinoides
9.
Biomed Pharmacother ; 162: 114659, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37068335

RESUMEN

Fair flawless skin is the goal for some cultures and the development of irregular skin pigmentation is considered an indication of premature skin aging. Hence, there is a rising demand for skin whitening cosmetics. Thus, this research will be focusing on discovering the anti-pigmentation properties of Swietenia macrophylla seeds. Firstly, the seeds were extracted with ethanol and further fractionate based on their polarity before testing them on zebrafish embryos. The ethanolic extract of the seed demonstrated significant inhibition of both tyrosinase activity and melanin production in the embryos. However, after fractionation, the anti-melanogenic ability was observed to have decreased, signifying that the phytocompounds may be synergistic in nature. Still in the proteomic studies the ethanolic extract and its hexane fraction both induced the downregulation of cathepsin LB and cytoskeletal proteins that have connections to the melanogenic pathway, confirming that S. macrophylla seeds do indeed have anti-pigmentation properties that can be exploited for cosmetic use. Next, limonoids (tetranortriterpenoids found in the seed) were tested for their inhibitory effect against human tyrosinase related protein 1 (TYRP-1) via molecular docking. It was found that limonoids have a stronger binding affinity to TYRP-1 than kojic acid, suggesting that these phytocompounds may have the potential in inhibiting pigmentation. However, this still needs further confirmation before these phytocompounds can be developed into a skin whitening agent. Other assays like ex-vivo or 3D human skin culture can also be used to better study the seeds anti-pigmentation effect on humans.


Asunto(s)
Limoninas , Meliaceae , Animales , Humanos , Melaninas/metabolismo , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa/metabolismo , Pez Cebra/metabolismo , Proteómica , Meliaceae/química
10.
Curr Res Neurobiol ; 3: 100032, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518345

RESUMEN

Embelin is a neuroprotective compound with therapeutic benefit against experimental Alzheimer's disease (AD)-like condition. In the quest of untangling the underlying mechanism behind the neuroprotective effect of Embelin in AD, an in-vitro study of Embelin against neuronal damage induced by Streptozotocin (STZ) in rat hippocampal neuronal culture was performed. Current findings demonstrated that Embelin (2.5-10 µM) has efficiently protected hippocampal neurons against STZ (8 mM)-induced neurotoxicity. An increase in amyloid precursor protein (APP), microtubule-associated protein tau (MAPT), glycogen synthase kinase 3 alpha (GSK-3α) and glycogen synthase kinase 3 beta (GSK-3ß) expression levels was observed when STZ (8 mM) stimulation was done for 24 h in the hippocampal neurons. A significant downregulation in the mRNA expression levels of APP, MAPT, GSK-3α, and GSK-3ß upon pre-treatment with different doses of Embelin (2.5 µM, 5 µM and 10 µM) reflects that Embelin attenuated STZ-induced dysfunction of insulin signaling (IR). Embelin significantly modulated the mRNA expression of scavenger enzyme Superoxide dismutase (SOD1). Furthermore, STZ had significantly upregulates an expression of Aß. On the contrary, pre-treatment with three doses of Embelin reversed an Aß-induced neuronal death. Our findings suggest that, Embelin prevents Aß accumulation via SOD1 pathway to protect against AD-like condition.

11.
Eur J Neurosci ; 34(1): 99-109, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21676040

RESUMEN

Olfactory and visual sensory mechanisms seem to play a critical role in migratory orientation and navigation. How these two mechanisms are functionally linked with other migratory processes is unknown. We investigated this, in relation to the profound behavioural shift that occurs during migration in the night-migratory blackheaded bunting (Emberiza melanocephala). Photosensitive unstimulated birds singly housed in activity cages were subjected to long days (LD 16/8). The activity of each bird was continuously monitored. Daily activity pattern defined the nonmigratory phase (no nocturnal activity) and migratory phase (intense nocturnal activity, Zugunruhe). Body mass and testis size were measured at the beginning and end of the experiment. Long days induced the migratory phenotype (body fattening and Zugunruhe) and testis maturation. The c-fos (Fos) immunoreactivity, as marker of the neural activity of the olfactory and visual subsystems, was measured at midday (8 h after lights-on) and midnight (4 h after lights-off) after the first seven long days (nonmigratory phase) and after seven nights of the Zugunruhe (migratory phase). In the nonmigratory phase, Fos-like immunoreactive (Fos-lir) cells in the olfactory and visual subsystems were high in the day and low at night. In the migratory phase, this was reversed; Fos-lir cells were high at night and low in the day. The phase inversion of neural activity in the olfactory and visual systems in parallel with the behavioral shift suggests a functional coupling between the systems governing migratory flight (expressed as Zugunruhe) and migratory orientation and navigation.


Asunto(s)
Migración Animal/fisiología , Ritmo Circadiano/fisiología , Vías Olfatorias/fisiología , Fotoperiodo , Pájaros Cantores/anatomía & histología , Pájaros Cantores/fisiología , Vías Visuales/fisiología , Animales , Conducta Animal/fisiología , Composición Corporal , Luz , Masculino , Actividad Motora/fisiología , Vías Olfatorias/citología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Estaciones del Año , Olfato/fisiología , Testículo/anatomía & histología , Visión Ocular/fisiología , Vías Visuales/citología
12.
Curr Neuropharmacol ; 19(6): 885-895, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32972344

RESUMEN

It is a known fact that inflammation affects several physiological processes, including the functioning of the central nervous system. Additionally, impairment of lipid mechanisms/pathways have been associated with a number of neurodegenerative disorders and Alzheimer's Disease (AD) is one of them. However, much attention has been given to the link between tau and beta- amyloid hypothesis in AD pathogenesis/prognosis. Increasing evidences suggest that biologically active lipid molecules could influence the pathophysiology of AD via a different mechanism of inflammation. This review intends to highlight the role of inflammatory responses in the context of AD with the emphasis on biochemical pathways of lipid metabolism enzyme, 5-lipoxygenase (5- LO).


Asunto(s)
Enfermedad de Alzheimer , Araquidonato 5-Lipooxigenasa , Péptidos beta-Amiloides , Humanos , Inflamación
13.
Biomed Pharmacother ; 144: 112250, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34607104

RESUMEN

The resin/gum of Boswellia species belonging to the family of Burseraceae is a naturally occurring mixture of bioactive compounds, which was traditionally used as a folk medicine to treat conditions like chronic inflammation. Several research studies have also explored its' therapeutic potential against multiple neurodegenerative diseases such as Alzheimer's disease (AD). The main chemical constituents of this gum include boswellic acids (BAs) like 3-O-acetyl-11-keto-ß boswellic acid (AKBA) that possess potent anti-inflammatory and neuroprotective properties in AD. It is also involved in inhibiting the acetylcholinesterase (AChE) activity in the cholinergic pathway and improve choline levels as well as its binding with nicotinic receptors to produce anti-inflammatory effects. Multiple shreds of evidence have demonstrated that BAs modulate key molecular targets and signalling pathways like 5-lipoxygenase/cyclooxygenase, Nrf2, NF-kB, cholinergic, amyloid-beta (Aß), and neurofibrillary tangles formation (NFTs) that are involved in AD progression. The present review focuses on the possible mechanistic therapeutic role of BAs in modulating the 5-LOX/COX pathway in arachidonic acid metabolism, activating Nrf2 through binding of ARE, inhibiting NF-kB and AChE activity. In addition, an inhibition of amyloid plaques (Aß) and neurofibrillary tangles (NFTs) induced neurotoxicity and neuroinflammation in AD by BAs is also discussed in this review. We have also highlighted that BAs possess beneficial effects in AD by targeting multiple molecular pathways and makes it an emerging drug candidate for treating neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Encéfalo/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Degeneración Nerviosa , Fármacos Neuroprotectores/farmacología , Triterpenos/farmacología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Humanos , Placa Amiloide , Transducción de Señal
14.
Biomedicines ; 8(5)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32365983

RESUMEN

Alzheimer's disease (AD) is a chronic neurodegenerative brain disease that is characterized by impairment in cognitive functioning as well as the presence of intraneuronal neurofibrillary tangles (NFTs) and extracellular senile plaques. There is a growing interest in the potential of phytochemicals to improve memory, learning, and general cognitive abilities. The Malaysian herb Orthosiphon stamineus is a traditional remedy that possesses anti-inflammatory, anti-oxidant, and free-radical scavenging abilities, all of which are known to protect against AD. Previous studies have reported that intracerebroventricular (ICV) administration of streptozotocin (STZ) mimics a condition similar to that observed in AD. This experiment thus aimed to explore if an ethanolic leaf extract of O. stamineus has the potential to be a novel treatment for AD in a rat model and can reverse the STZ- induced learning and memory dysfunction. The results of this study indicate that O. stamineus has the potential to be potentially effective against AD-like condition, as both behavioral models employed in this study was observed to be able to reverse memory impairment. Treatment with the extract was able to decrease the up-regulated expression levels of amyloid precursor protein (APP), microtubule associated protein tau (MAPT), Nuclear factor kappa-light-chain-enhancer of activated B cells (NFᴋB), glycogen synthase kinase 3 alpha (GSK3α), and glycogen synthase kinase 3 beta (GSK3ß) genes indicating the extract's neuroprotective ability. These research findings suggest that the O. stamineus ethanolic extract demonstrated an improved effect on memory, and hence, could serve as a potential therapeutic target for the treatment of neurodegenerative diseases such as AD.

15.
PLoS One ; 15(9): e0238503, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32925968

RESUMEN

Clinacanthus nutans (CN) (Acanthaceae) is well-known for its anti-inflammatory properties among Asian communities; however, there are currently no data specifically focused on the anti-inflammatory effects of CN on the brain tissue. Neuroinflammation is a common consequence of toxin intrusion to any part of the central nervous system (CNS). As an innate immune response, the CNS may react through both protective and/or toxic actions due to the activation of neuron cells producing pro- and/or anti-inflammatory cytokines in the brain. The unresolved activation of the inflammatory cytokines' response is associated with the pathogenesis of neurological disorders. The present study aimed to decipher the metabolic mechanism on the effects of 14 days oral treatment with CN aqueous extract in induced-lipopolysaccharides (LPS) rats through 1H NMR spectroscopic biomarker profiling of the brain tissue and the related cytokines. Based on the principal component analysis (PCA) of the nuclear magnetic resonance (NMR) spectral data, twenty-one metabolites in the brain tissue were profiled as biomarkers for the LPS (10 µL)-induced neuroinflammation following intracerebroventricular injection. Among the twenty-one biomarkers in the neuroinflammed rats, CN treatment of 1000 and 500 mg/kg BW successfully altered lactate, pyruvate, phosphorylcholine, glutamine, and α-ketoglutarate when compared to the negative control. Likewise, statistical isolinear multiple component analysis (SIMCA) showed that treatments by CN and the positive control drug, dextromethorphan (DXM, 5 mg/kg BW), have anti-neuroinflammatory potential. A moderate correlation, in the orthogonal partial least squares (OPLS) regression model, was found between the spectral metabolite profile and the cytokine levels. The current study revealed the existence of high levels of pro-inflammatory cytokines, namely IL-1α, IL-1ß, and TNF-α in LPS-induced rats. Both CN dose treatments lowered IL-1ß significantly better than DXM Interestingly, DXM and CN treatments both exhibited the upregulation of the anti-inflammatory cytokines IL-2 and 4. However, DXM has an advantage over CN in that the former also increased the expression of IL-10 of anti-inflammatory cytokines. In this study, a metabolomics approach was successfully applied to discover the mechanistic role of CN in controlling the neuroinflammatory conditions through the modulation of complex metabolite interactions in the rat brain.


Asunto(s)
Acanthaceae , Antiinflamatorios/uso terapéutico , Encéfalo/efectos de los fármacos , Citocinas/metabolismo , Inflamación/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Acanthaceae/química , Animales , Antiinflamatorios/química , Encéfalo/metabolismo , Inflamación/metabolismo , Masculino , Metabolómica , Extractos Vegetales/química , Análisis de Componente Principal , Análisis por Matrices de Proteínas , Espectroscopía de Protones por Resonancia Magnética , Ratas Sprague-Dawley
16.
Front Pharmacol ; 10: 1216, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31736744

RESUMEN

Alzheimer's disease (AD) is a chronic neurodegenerative brain disease which is characterized by impairment in cognitive functioning. Orthosiphon stamineus (OS) Benth. (Lamiaceae) is a medicinal plant found around Southeast Asia that has been employed as treatments for various diseases. OS extract contains many active compounds that have been shown to possess various pharmacological properties whereby in vitro studies have demonstrated neuroprotective as well as cholinesterase inhibitory effects. This study, therefore aimed at determining whether this Malaysian plant derived flavonoid can reverse scopolamine induced learning and memory dysfunction in the novel object recognition (NOR) test and the elevated plus maze (EPM) test. In the present study, rats were treated once daily with OS 50 mg/kg, 100 mg/kg, 200 mg/kg and donepezil 1 mg/kg via oral dosing and were given intraperitoneal (ip) injection of scopolamine 1 mg/kg daily to induce cognitive deficits. Rats were subjected to behavioral analysis to assess learning and memory functions and hippocampal tissues were extracted for gene expression and immunohistochemistry studies. All the three doses demonstrated improved scopolamine-induced impairment by showing shortened transfer latency as well as the higher inflexion ratio when compared to the negative control group. OS extract also exhibited memory-enhancing activity against chronic scopolamine-induced memory deficits in the long-term memory novel object recognition performance as indicated by an increase in the recognition index. OS extract was observed to have modulated the mRNA expression of CREB1, BDNF, and TRKB genes and pretreatment with OS extract were observed to have increased the immature neurons against hippocampal neurogenesis suppressed by scopolamine, which was confirmed by the DCX-positive stained cells. These research findings suggest that the OS ethanolic extract demonstrated an improving effect on memory and hence could serve as a potential therapeutic target for the treatment of neurodegenerative diseases like AD.

17.
Exp Ther Med ; 18(2): 1407-1416, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31363378

RESUMEN

Early life exposure to stress has been suggested to be a crucial factor for the development of the brain and its functions. It is well documented that childhood stress is a risk factor for sleep problems in adulthood. Piper betle L. leaf extract (PB) has been used in several traditional medicines to cure various ailments. Recently, PB has been proved to have antidepressant activity. The literature suggests that antidepressants affect the synthesis and release of melatonin through several mechanisms. Thus, this study investigated the potential role of PB for the treatment of sleep disruption after early life stress exposure. Firstly, dexamethasone (DEX) (2 and 20 mg/l for 24 h) was administered to zebrafish larvae on the 4th day post-fertilization (dpf) to induce early life stress. The effects of stress on behaviour during adulthood, melatonin level and stress-related gene expression (nfkb) in the brain were then studied. Next, the possible role of PB (10 and 30 mg/Kg) was studied by measuring its effect on behaviour and by quantifying the expression levels of several melatonin-related (MT1, MT2, aanat1, aanat2) and stress-related (nfkb) genes by qPCR. DEX-treated zebrafish exhibited anxious behaviour, along with a lower level of melatonin and a higher mRNA expression of nfkb. After treatment with PB, a similar effect on behaviour and gene expression levels as the melatonin treatment group (10 mg/kg; positive control) was seen in adult zebrafish. These molecular confirmations of the observed behavioural effects of the PB indicate a possible role in the treatment of early life stress-induced sleep disruption.

18.
Front Pharmacol ; 10: 315, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31057394

RESUMEN

Epilepsy is a neuronal disorder associated with several neurological and behavioral alterations characterized by recurrent spontaneous epileptic seizures. Despite having more than 20 anti-epileptic drugs (AEDs), they only provide a symptomatic treatment. As well as, currently available AEDs also displayed cognitive alterations in addition to retarding seizure. This leads to the need for exploring new molecules that not only retard seizure but also improve cognitive impairment. Embelin (EMB) is a benzoquinone derivative which has already demonstrated its pharmacological potentials against arrays of neurological conditions. The current study developed a chronic kindling model in adult zebrafish by using repeated administration of small doses of pentylenetetrazole (PTZ) and a single dose of Kainic acid (KA) to investigate the associated memory impairment. This has been done by using the three-axis maze which is a conventional method to test the learning ability and egocentric memory in zebrafish. As well as, the ameliorative potential of EMB has been evaluated against chronic epilepsy-related memory alterations. Moreover the expression level of pro-inflammatory genes such as C-C motif ligand 2 (CCL2), toll-like receptor-4 (TLR4), tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1) and interferon-γ (IFN-γ) were evaluated. The level of several neurotransmitters such as γ-aminobutyric acid (GABA), acetylcholine (Ach) and glutamate (Glu) was evaluated by liquid chromatography-mass spectrometry (LC-MS). The results showed that daily dose of PTZ 80 mg/kg for 10 days successfully induces a kindling effect in zebrafish, whereas the single dose of KA did not. As compared to control, the PTZ and KA group demonstrates impairment in memory as demonstrated by the three-axis maze. The PTZ group treated with a series of EMB doses (ranging from 0.156 to 0.625 mg/kg) was found to have retarded seizure as well as significantly reduces epilepsy-induced memory alteration. In addition, EMB treatment reduces the expression of inflammatory markers implicating its anti-inflammatory potential. Moreover, levels of GABA, Ach, and glutamate are increased in EMB administered group as compared to the PTZ administered group. Overall, findings demonstrate that EMB might be a potential candidate against chronic epilepsy-related cognitive dysfunction as EMB prevents the seizures, so we expect it to prevent the associated neuroinflammation and learning deficit.

19.
Front Pharmacol ; 10: 1249, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31708779

RESUMEN

Purpose of the research: Epilepsy is a continuous process of neurodegeneration categorized by an enduring tendency to generate uncontrolled electrical firing known as seizures causing involuntary movement all over the body. Cognitive impairment and behavioral disturbances are among the more alarming co-morbidities of epilepsy. Anti-epileptic drugs (AEDs) were found to be successful in controlling epilepsy but are reported to worsen cognitive status in patients. Embelin (EMB) is a benzoquinone derived from the plant Embelia ribes and is reported to have central nervous system (CNS) activity. This study aims to evaluate the effectiveness of EMB against pentylenetetrazole (PTZ) induced acute seizures and its associated cognitive dysfunction. This was done via docking studies as well as evaluating neurotransmitter and gene expression in the zebrafish brain. The principal results: Behavioral observations showed that EMB reduced epileptic seizures and the T-maze study revealed that EMB improved the cognitive function of the fish. The docking study of EMB showed a higher affinity toward gamma-aminobutyric acid (GABAA) receptor as compared to the standard diazepam, raising the possibility of EMB working via the alpha subunit of the GABA receptor. EMB was found to modulate several genes, neurotransmitters, and also neuronal growth, all of which play an important role in improving cognitive status after epileptic seizures. Healthy zebrafish treated with EMB alone were found to have no behavioral and biochemical interference or side effects. The immunohistochemistry data suggested that EMB also promotes neuronal protection and neuronal migration in zebrafish brains. Major Conclusions: It was perceived that EMB suppresses seizure-like behavior via GABAA receptor pathway and has a positive impact on cognitive functions. The observed effect was supported by docking study, T-maze behavior, neurotransmitter and gene expression levels, and immunohistology study. The apparatus such as the T-maze and seizure scoring behavior tank were found to be a straightforward technique to score seizure and test learning ability after acute epileptic seizures. These research findings suggest that EMB could be a promising molecule for epilepsy induced learning and memory dysfunction.

20.
Sci Rep ; 9(1): 14507, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601902

RESUMEN

Alzheimer's disease (AD) is the second most occurring neurological disorder after stroke and is associated with cerebral hypoperfusion, possibly contributing to cognitive impairment. In the present study, neuroprotective and anti-AD effects of embelin were evaluated in chronic cerebral hypoperfusion (CCH) rat model using permanent bilateral common carotid artery occlusion (BCCAO) method. Rats were administered with embelin at doses of 0.3, 0.6 or 1.2 mg/kg (i.p) on day 14 post-surgery and tested in Morris water maze (MWM) followed by electrophysiological recordings to access cognitive abilities and synaptic plasticity. The hippocampal brain regions were extracted for gene expression and neurotransmitters analysis. Treatment with embelin at the doses of 0.3 and 0.6 mg/kg significantly reversed the spatial memory impairment induced by CCH in rats. Embelin treatment has significantly protected synaptic plasticity impairment as assessed by hippocampal long-term potentiation (LTP) test. The mechanism of this study demonstrated that embelin treatment alleviated the decreased expression of BDNF, CREB1, APP, Mapt, SOD1 and NFκB mRNA levels caused by CCH rats. Furthermore, treatment with embelin demonstrated neuromodulatory activity by its ability to restore hippocampal neurotransmitters. Overall these data suggest that embelin improve memory and synaptic plasticity impairment in CCH rats and can be a potential drug candidate for neurodegenerative disease-related cognitive disorders.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Benzoquinonas/farmacología , Isquemia Encefálica/tratamiento farmacológico , Disfunción Cognitiva/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Factor Neurotrófico Derivado del Encéfalo/genética , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Disfunción Cognitiva/prevención & control , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Potenciación a Largo Plazo/efectos de los fármacos , Aprendizaje por Laberinto , Neuronas/efectos de los fármacos , ARN Mensajero/genética , Ratas , Memoria Espacial/efectos de los fármacos , Superóxido Dismutasa-1/genética , Proteínas tau/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA