RESUMEN
In this paper, Cu(x)O photocatalyst on plasmonic nanoporous Au film is proposed to enhancing the H(2) evolution rate of pure water splitting. The nanoporous Au film can simultaneously provide surface-enhanced absorption and built-in potential. The reflection spectrum shows that the surface plasmon (SP) assisted absorption wavelength of the Cu(x)O on the nanoporous Au film can be modified by changing the annealing temperature. It is found that the enhancement of the H(2) evolution rate highly depends on the SP-assisted absorption. As the annealing temperature is 220 ° C, the H(2) evolution rate is 58 µmol hr(-1) under the condition that the device area is 0.25 cm(2).
RESUMEN
We combine theory and experiment to demonstrate that a carefully designed gradient meta-surface supports high-efficiency anomalous reflections for near-infrared light following the generalized Snell's law, and the reflected wave becomes a bounded surface wave as the incident angle exceeds a critical value. Compared to previously fabricated gradient meta-surfaces in infrared regime, our samples work in a shorter wavelength regime with a broad bandwidth (750-900 nm), exhibit a much higher conversion efficiency (â¼80%) to the anomalous reflection mode at normal incidence, and keep light polarization unchanged after the anomalous reflection. Finite-difference-time-domain (FDTD) simulations are in excellent agreement with experiments. Our findings may lead to many interesting applications, such as antireflection coating, polarization and spectral beam splitters, high-efficiency light absorbers, and surface plasmon couplers.