Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(3): 105706, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309500

RESUMEN

Glioma stem cell/glioma-initiating cell (GIC) and their niches are considered responsible for the therapeutic resistance and recurrence of malignant glioma. To clarify the molecular mechanisms of GIC maintenance/differentiation, we performed a unique integrated proteogenomics utilizing GIC clones established from patient tumors having the potential to develop glioblastoma. After the integration and extraction of the transcriptomics/proteomics data, we found that chondroitin sulfate proteoglycan 4 (CSPG4) and its glycobiosynthetic enzymes were significantly upregulated in GICs. Glyco-quantitative PCR array revealed that chondroitin sulfate (CS) biosynthetic enzymes, such as xylosyltransferase 1 (XYLT1) and carbohydrate sulfotransferase 11, were significantly downregulated during serum-induced GIC differentiation. Simultaneously, the CS modification on CSPG4 was characteristically decreased during the differentiation and also downregulated by XYLT1 knockdown. Notably, the CS degradation on CSPG4 by ChondroitinaseABC treatment dramatically induced GIC differentiation, which was significantly inhibited by the addition of CS. GIC growth and differentiation ability were significantly suppressed by CSPG4 knockdown, suggesting that CS-CSPG4 is an important factor in GIC maintenance/differentiation. To understand the molecular function of CS-CSPG4, we analyzed its associating proteins in GICs and found that CSPG4, but not CS-CSPG4, interacts with integrin αV during GIC differentiation. This event sequentially upregulates integrin-extracellular signal-regulated kinase signaling, which can be inhibited by cyclic-RGD (Arg-Gly-Asp) integrin αV inhibitor. These results indicate that CS-CSPG4 regulates the GIC microenvironment for GIC maintenance/differentiation via the CS moiety, which controls integrin signaling. This study demonstrates a novel function of CS on CSPG4 as a niche factor, so-called "glyco-niche" for GICs, and suggests that CS-CSPG4 could be a potential target for malignant glioma.


Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato , Sulfatos de Condroitina , Glioma , Proteínas de la Membrana , Humanos , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Sulfatos de Condroitina/metabolismo , Glioma/metabolismo , Glioma/patología , Integrina alfaV , Proteínas de la Membrana/metabolismo , Microambiente Tumoral
2.
J Proteome Res ; 23(4): 1408-1419, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38536229

RESUMEN

The coronavirus disease (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has impacted public health globally. As the glycosylation of viral envelope glycoproteins is strongly associated with their immunogenicity, intensive studies have been conducted on the glycans of the glycoprotein of SARS-CoV-2, the spike (S) protein. Here, we conducted intensive glycoproteomic analyses of the SARS-CoV-2 S protein of ancestral and γ-variant strains using a combinatorial approach with two different technologies: mass spectrometry (MS) and lectin microarrays (LMA). Our unique MS1-based glycoproteomic technique, Glyco-RIDGE, in addition to MS2-based Byonic search, identified 1448 (ancestral strain) and 1785 (γ-variant strain) site-specific glycan compositions, respectively. Asparagine at amino acid position 20 (N20) is mainly glycosylated within two successive potential glycosylation sites, N17 and N20, of the γ-variant S protein; however, we found low-frequency glycosylation at N17. Our novel approaches, glycostem mapping and glycoleaf scoring, also illustrate the moderately branched/extended, highly fucosylated, and less sialylated natures of the glycoforms of S proteins. Subsequent LMA analysis emphasized the intensive end-capping of glycans by Lewis fucoses, which complemented the glycoproteomic features. These results illustrate the high-resolution glycoproteomic features of the SARS-CoV-2 S protein, contributing to vaccine design and understanding of viral protein synthesis.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/química , Lectinas , Polisacáridos/química , Espectrometría de Masas
3.
Histochem Cell Biol ; 161(5): 423-434, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38393396

RESUMEN

Aberrant glycosylation is an important factor in facilitating tumor progression and therapeutic resistance. In this study, using Wisteria floribunda agglutinin (WFA), we examined the expression of WFA-binding glycans (WFAG) in cholangiocarcinoma (CCA). The results showed that WFAG was highly detected in precancerous and cancerous lesions of human CCA tissues, although it was rarely detected in normal bile ducts. The positive signal of WFAG in the cancerous lesion accounted for 96.2% (50/52) of the cases. Overexpression of WFAG was significantly associated with lymph node and distant metastasis (P < 0.05). The study using the CCA hamster model showed that WFAG is elevated in preneoplastic and neoplastic bile ducts as early as 1 month after being infected with liver fluke and exposed to N-nitrosodimethylamine. Functional analysis was performed to reveal the role of WFAG in CCA. The CCA cell lines KKU-213A and KKU-213B were treated with WFA, followed by migration assay. Our data suggested that WFAG facilitates the migration of CCA cells via the activation of the Akt and ERK signaling pathways. In conclusion, we have demonstrated the association of WFAG with carcinogenesis and metastasis of CCA, suggesting its potential as a target for the treatment of the disease.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Lectinas de Plantas , Polisacáridos , Receptores N-Acetilglucosamina , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Animales , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Humanos , Lectinas de Plantas/metabolismo , Polisacáridos/metabolismo , Polisacáridos/química , Receptores N-Acetilglucosamina/metabolismo , Cricetinae , Masculino , Carcinogénesis/metabolismo , Carcinogénesis/patología , Metástasis de la Neoplasia , Femenino , Persona de Mediana Edad , Movimiento Celular/efectos de los fármacos
4.
Mol Cell Biochem ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386218

RESUMEN

Diabetes mellitus is one of the major causes of ischemic and nonischemic heart failure. While hypertension and coronary artery disease are frequent comorbidities in patients with diabetes, cardiac contractile dysfunction and remodeling occur in diabetic patients even without comorbidities, which is referred to as diabetic cardiomyopathy. Investigations in recent decades have demonstrated that the production of reactive oxygen species (ROS), impaired handling of intracellular Ca2+, and alterations in energy metabolism are involved in the development of diabetic cardiomyopathy. AMP deaminase (AMPD) directly regulates adenine nucleotide metabolism and energy transfer by adenylate kinase and indirectly modulates xanthine oxidoreductase-mediated pathways and AMP-activated protein kinase-mediated signaling. Upregulation of AMPD in diabetic hearts was first reported more than 30 years ago, and subsequent studies showed similar upregulation in the liver and skeletal muscle. Evidence for the roles of AMPD in diabetes-induced fatty liver, sarcopenia, and heart failure has been accumulating. A series of our recent studies showed that AMPD localizes in the mitochondria-associated endoplasmic reticulum membrane as well as the sarcoplasmic reticulum and cytosol and participates in the regulation of mitochondrial Ca2+ and suggested that upregulated AMPD contributes to contractile dysfunction in diabetic cardiomyopathy via increased generation of ROS, adenine nucleotide depletion, and impaired mitochondrial respiration. The detrimental effects of AMPD were manifested at times of increased cardiac workload by pressure loading. In this review, we briefly summarize the expression and functions of AMPD in the heart and discuss the roles of AMPD in diabetic cardiomyopathy, mainly focusing on contractile dysfunction caused by this disorder.

5.
J Pharmacol Sci ; 156(1): 9-18, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39068035

RESUMEN

Necroptosis, necrosis characterized by RIPK3-MLKL activation, has been proposed as a mechanism of doxorubicin (DOX)-induced cardiomyopathy. We showed that rapamycin, an mTORC1 inhibitor, attenuates cardiomyocyte necroptosis. Here we examined role of MLKL in DOX-induced myocardial damage and protective effects of rapamycin. Cardiomyopathy was induced in mice by intraperitoneal injections of DOX (10 mg/kg, every other day) and followed for 7 days. DOX-treated mice showed a significant decline in LVEF assessed by cardiac MRI (45.5 ± 5.1% vs. 65.4 ± 4.2%), reduction in overall survival rates, and increases in myocardial RIPK3 and MLKL expression compared with those in vehicle-treated mice, and those changes were prevented by administration of rapamycin (0.25 mg/kg) before DOX injection. In immunohistochemical analyses, p-MLKL signals were detected in the cardiomyocytes of DOX-treated mice, and the signals were reduced by rapamycin. Mlkl+/- and Mlkl-/- mice were similarly resistant to DOX-induced cardiac dysfunction, indicating that a modest reduction in MLKL level is sufficient to prevent the development of DOX-induced cardiomyopathy. However, evidence of cardiomyocyte necrosis assessed by C9 immunostaining, presence of replacement fibrosis, and electron microscopic analyses was negligible in the myocardium of DOX-treated mice. Thus, MLKL-mediated signaling contributes to DOX-induced cardiac dysfunction primarily by a necrosis-independent mechanism, which is inhibitable by rapamycin.


Asunto(s)
Cardiomiopatías , Doxorrubicina , Ratones Endogámicos C57BL , Miocitos Cardíacos , Necroptosis , Proteínas Quinasas , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Sirolimus , Animales , Doxorrubicina/efectos adversos , Proteínas Quinasas/metabolismo , Sirolimus/farmacología , Cardiomiopatías/inducido químicamente , Cardiomiopatías/prevención & control , Cardiomiopatías/patología , Cardiomiopatías/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Necroptosis/efectos de los fármacos , Masculino , Ratones , Antibióticos Antineoplásicos/efectos adversos , Antibióticos Antineoplásicos/toxicidad
6.
Heart Vessels ; 39(1): 35-47, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37661199

RESUMEN

Results of experimental studies have shown that ß-aminoisobutyric acid (BAIBA), an exercise-induced myokine-like molecule, is an endogenous negative regulator of fat mass in mice, but it remains unclear whether that is the case in humans, though an enhanced BAIBA concentration in patients receiving sodium-glucose cotransporter 2 inhibitors was found in our recent study. The objective of this study was to analyze the determinants of circulating BAIBA concentration in humans, with focus on the possible link between circulating BAIBA and body composition including fat mass. Data for 188 consecutive patients with heart failure (HF, 64 ± 13 years; 70% male) who received a dual energy X ray absorptiometry (DEXA) scan for assessment of body composition including fat mass index (FMI) and appendicular skeletal muscle mass index (ASMI) were used in this study. Plasma BAIBA concentration in a fasting state after stabilization of HF was determined using ultraperformance liquid chromatography. Plasma BAIBA was detected in 66% of the patients. In simple linear regression analyses of data from patients in whom plasma BAIBA was detected, plasma BAIBA concentration was positively correlated with uric acid and was negatively correlated with body mass index (BMI), estimated glomerular filtration rate (eGFR), FMI, and % body fat. There were no correlations between plasma BAIBA concentration and indexes of muscle mass and bone mass. The results of multiple linear regression analyses showed that FMI and % body fat in addition to BMI, but not ASMI, were independent explanatory factors for plasma BAIBA concentration. In conclusion, plasma BAIBA concentration is inversely correlated with indexes of fat mass, indicating that BAIBA may be a therapeutic target for excessive fat accumulation.


Asunto(s)
Insuficiencia Cardíaca , Mioquinas , Humanos , Masculino , Ratones , Animales , Femenino , Índice de Masa Corporal , Ácidos Aminoisobutíricos/farmacología , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico
7.
Artículo en Inglés | MEDLINE | ID: mdl-39066577

RESUMEN

Protein O-glycosylation, also known as mucin-type O-glycosylation, is one of the most abundant glycosylation in mammalian cells. It is initially catalyzed by a family of polypeptide GalNAc transferases (ppGalNAc-Ts). The trimeric spike protein (S) of SARS-CoV-2 is highly glycosylated and facilitates the virus's entry into host cells and membrane fusion of the virus. However, the functions and relationship between host ppGalNAc-Ts and O-glycosylation on the S protein remain unclear. Herein, we identify 15 O-glycosites and 10 distinct O-glycan structures on the S protein using an HCD-product-dependent triggered ETD mass spectrometric analysis. We observe that the isoenzyme T6 of ppGalNAc-Ts (ppGalNAc-T6) exhibits high O-glycosylation activity for the S protein, as demonstrated by an on-chip catalytic assay. Overexpression of ppGalNAc-T6 in HEK293 cells significantly enhances the O-glycosylation level of the S protein, not only by adding new O-glycosites but also by increasing O-glycan heterogeneity. Molecular dynamics simulations reveal that O-glycosylation on the protomer-interface regions, modified by ppGalNAc-T6, potentially stabilizes the trimeric S protein structure by establishing hydrogen bonds and non-polar interactions between adjacent protomers. Furthermore, mutation frequency analysis indicates that most O-glycosites of the S protein are conserved during the evolution of SARS-CoV-2 variants. Taken together, our finding demonstrate that host O-glycosyltransferases dynamically regulate the O-glycosylation of the S protein, which may influence the trimeric structural stability of the protein. This work provides structural insights into the functional role of specific host O-glycosyltransferases in regulating the O-glycosylation of viral envelope proteins.

8.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38474152

RESUMEN

Necroptosis, a form of necrosis, and alterations in mitochondrial dynamics, a coordinated process of mitochondrial fission and fusion, have been implicated in the pathogenesis of cardiovascular diseases. This study aimed to determine the role of mitochondrial morphology in canonical necroptosis induced by a combination of TNFα and zVAD (TNF/zVAD) in H9c2 cells, rat cardiomyoblasts. Time-course analyses of mitochondrial morphology showed that mitochondria were initially shortened after the addition of TNF/zVAD and then their length was restored, and the proportion of cells with elongated mitochondria at 12 h was larger in TNF/zVAD-treated cells than in non-treated cells (16.3 ± 0.9% vs. 8.0 ± 1.2%). The knockdown of dynamin-related protein 1 (Drp1) and fission 1, fission promoters, and treatment with Mdivi-1, a Drp-1 inhibitor, had no effect on TNF/zVAD-induced necroptosis. In contrast, TNF/zVAD-induced necroptosis was attenuated by the knockdown of mitofusin 1/2 (Mfn1/2) and optic atrophy-1 (Opa1), proteins that are indispensable for mitochondrial fusion, and the attenuation of necroptosis was not canceled by treatment with Mdivi-1. The expression of TGFß-activated kinase (TAK1), a negative regulator of RIP1 activity, was upregulated and the TNF/zVAD-induced RIP1-Ser166 phosphorylation, an index of RIP1 activity, was mitigated by the knockdown of Mfn1/2 or Opa1. Pharmacological TAK1 inhibition attenuated the protection afforded by Mfn1/2 and Opa1 knockdown. In conclusion, the inhibition of mitochondrial fusion increases TAK1 expression, leading to the attenuation of canonical necroptosis through the suppression of RIP1 activity.


Asunto(s)
Dinámicas Mitocondriales , Necroptosis , Ratas , Animales , Regulación hacia Abajo , Necrosis/metabolismo , Mitocondrias/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
9.
Anal Chem ; 95(32): 11868-11873, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37535807

RESUMEN

Protein glycosylation is a crucial factor that must be evaluated in biological pharmaceuticals. The glycoform profile of a protein can vary depending on the conditions of the cultivation, purification process, and the selection of a host cell. Lectin microarrays are reliable bioanalytical methods used in the early phases of bioprocesses for the detection of glycosylation. The concept of a fully automated glycan detection with a bead array has been previously reported; however, no simple system has been constructed on fluorescence-based detection using a microarray. Here, we present a fully automated detection system equipped with a novel fluorescence detector for a 13-lectin bead array with a single tip. The lattice-like arrangement of a set of fibers proximate to the tip of the light emitting diode and photomultiplier tube detector minimized the noise caused by the reflection of incident light on the plastic capillary tip and bead. A unique rolling-circle fiber unit with quadruple lattices stacked in two layers realizes the 8-parallel automeasurement with a drastic reduction in scanning time and machine size. The 8-glycan profiles obtained automatically within 25 min were identical with those obtained with the conventional lectin microarray after overnight incubation. The signals obtained were represented as lectin dotcodes. Therefore, autolectin dotcoding assisted by the twin 8 legs named as "detection and irradiation octopuses" may be a rapid glyco-evaluation system during the production and development of biopharmaceuticals.

10.
J Pharmacol Sci ; 152(2): 112-122, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37169475

RESUMEN

Aging is associated with impairment of multiple organs, including skeletal muscle and heart. In this study, we investigated whether resveratrol, an activator of an NAD+-dependent protein deacetylase Sirtuin-1 (SIRT1), attenuates age-related sarcopenia and cardiomyocyte hypertrophy in mice. Treatment of mice with resveratrol (0.4 g/kg diet) from 28 weeks of age for 32 weeks prevented aging-associated shortening of rotarod riding time. In the tibialis anterior (TA) muscle, histogram analysis showed that the atrophic muscle was increased in 60-week-old (wo) mice compared with 20-wo mice, which was attenuated by resveratrol. In the heart, resveratrol attenuated an aging-associated increase in the cardiomyocyte diameter. Acetylated proteins were increased and autophagic activity was reduced in the TA muscle of 60-wo mice compared with those of 20-wo mice. Resveratrol treatment reduced levels of acetylated proteins and restored autophagic activity in the TA muscle. Aging-related reduction in myocardial autophagy was also suppressed by resveratrol. Skeletal muscle-specific SIRT1 knockout mice showed increases in acetylated proteins and atrophic muscle fibers and reduced autophagic activity in the TA muscle. These results suggest that activation of SIRT1 by treatment with resveratrol suppresses sarcopenia and cardiomyocyte hypertrophy by restoration of autophagy in mice.


Asunto(s)
Sarcopenia , Estilbenos , Ratones , Animales , Resveratrol/farmacología , Sarcopenia/tratamiento farmacológico , Sarcopenia/metabolismo , Sirtuina 1/metabolismo , Músculo Esquelético/metabolismo , Envejecimiento , Miocitos Cardíacos/metabolismo , Hipertrofia , Estilbenos/farmacología , Estilbenos/uso terapéutico
11.
J Pharmacol Sci ; 151(2): 134-143, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36707179

RESUMEN

Accumulating evidence suggests that necroptosis of cardiomyocytes contributes to cardiovascular diseases. Lethal disruption of the plasma membrane in necroptosis is induced by oligomers of mixed lineage kinase domain-like (MLKL) that is translocated to the membrane from the cytosol. However, the role played by cytoplasmic-nuclear shuttling of MLKL is unclear. Here, we tested the hypothesis that translocation of MLKL to the nucleus promotes the necroptosis of cardiomyocytes. Activation of the canonical necroptotic signaling pathway by a combination of TNF-α and zVAD (TNF/zVAD) increased nuclear MLKL levels in a RIP1-activity-dependent manner in H9c2 cells, a rat cardiomyoblast cell line. By use of site-directed mutagenesis, we found a nuclear export signal sequence in MLKL and prepared its mutant (MLKL-L280/283/284A), though a search for a nuclear import signal was unsuccessful. MLKL-L280/283/284A localized to both the cytosol and the nucleus. Expression of MLKL-L280/283/284A induced necroptotic cell death, which was attenuated by GppNHp, an inhibitor of Ran-mediated nuclear import, but not by inhibition of RIP1 activity or knockdown of RIP3 expression. GppNHp partly suppressed H9c2 cell death induced by TNF/zVAD treatment. These results suggest that MLKL that is translocated to the nucleus via RIP1-mediated necroptotic signaling enhances the necroptosis of cardiomyocytes through a RIP1-/RIP3-independent mechanism.


Asunto(s)
Proteínas Quinasas , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Ratas , Animales , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Necroptosis , Muerte Celular , Transducción de Señal , Necrosis , Apoptosis
12.
Anal Bioanal Chem ; 415(28): 6975-6984, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37395746

RESUMEN

Lectin microarray (LMA) is a high-throughput platform that enables the rapid and sensitive analysis of N- and O-glycans attached to glycoproteins in biological samples, including formalin-fixed paraffin-embedded (FFPE) tissue sections. Here, we evaluated the sensitivity of the advanced scanner based on the evanescent-field fluorescence principle, which is equipped with a 1× infinity correction optical system and a high-end complementary metal-oxide semiconductor (CMOS) image sensor in digital binning mode. Using various glycoprotein samples, we estimated that the mGSR1200-CMOS scanner has at least fourfold higher sensitivity for the lower limit of linearity range than that of a previous charge-coupled device scanner (mGSR1200). A subsequent sensitivity test using HEK293T cell lysates demonstrated that cell glycomic profiling could be performed with only three cells, which has the potential for the glycomic profiling of cell subpopulations. Thus, we examined its application in tissue glycome mapping, as indicated in the online LM-GlycomeAtlas database. To achieve fine glycome mapping, we refined the laser microdissection-assisted LMA procedure to analyze FFPE tissue sections. In this protocol, it was sufficient to collect 0.1 mm2 of each of the tissue fragments from 5-µm-thick sections, which differentiated the glycomic profile between the glomerulus and renal tubules of a normal mouse kidney. In conclusion, the improved LMA enables high-resolution spatial analysis, which expands the possibilities of its application classifying cell subpopulations in clinical FFPE tissue specimens. This will be used in the discovery phase for the development of novel glyco-biomarkers and therapeutic targets, and to expand the range of target diseases.


Asunto(s)
Glicoproteínas , Lectinas , Humanos , Animales , Ratones , Adhesión en Parafina , Células HEK293 , Formaldehído , Fijación del Tejido
13.
Am J Physiol Heart Circ Physiol ; 322(3): H394-H405, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35089809

RESUMEN

As there is cross talk in functions of the heart and kidney, acute or chronic injury in one of the two organs provokes adaptive and/or maladaptive responses in both organs, leading to cardiorenal syndrome (CRS). Acute kidney injury (AKI) induced by acute heart failure is referred to as type 1 CRS, and a frequent cause of this type of CRS is acute myocardial infarction (AMI). Diabetes mellitus increases the risk of AMI and also the risk of AKI of various causes. However, there have been only a few studies in which animal models of diabetes were used to examine how diabetes modulates AMI-induced AKI. In this review, we summarize findings regarding the mechanisms of type 1 CRS and the impact of diabetes on both AMI and renal susceptibility to AKI and we discuss mechanisms by which diabetes modulates AMI-induced AKI. Hemodynamic alterations induced by AMI could be augmented by diabetes via its detrimental effect on infarct size and contractile function of the noninfarcted region in the heart. Diabetes increases susceptibility of renal cells to hypoxia and oxidative stress by modulation of signaling pathways that regulate cell survival and autophagy. Recent studies have shown that diabetes mellitus even at early stage of cardiomyopathy/nephropathy predisposes the kidney to AMI-induced AKI, in which activation of Toll-like receptors and reactive oxygen species derived from NADPH oxidases are involved. Further analysis of cross talk between diabetic cardiomyopathy and diabetic kidney disease is necessary for obtaining a more comprehensive understanding of modulation of the AMI-AKI axis by diabetes.


Asunto(s)
Lesión Renal Aguda/fisiopatología , Síndrome Cardiorrenal/fisiopatología , Cardiomiopatías Diabéticas/fisiopatología , Nefropatías Diabéticas/fisiopatología , Infarto del Miocardio/fisiopatología , Lesión Renal Aguda/metabolismo , Animales , Síndrome Cardiorrenal/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Nefropatías Diabéticas/metabolismo , Humanos , Infarto del Miocardio/metabolismo
14.
Cardiovasc Diabetol ; 21(1): 285, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539818

RESUMEN

AIMS: The mechanism by which a sodium-glucose cotransporter inhibitor (SGLT2i) induces favorable effects on diabetes and cardiovascular diseases including heart failure (HF) remains poorly understood. Metabolomics including amino acid profiling enables detection of alterations in whole body metabolism. The aim of this study was to determine whether plasma amino acid profiles are modulated by SGLT2i use in HF patients with type 2 diabetes mellitus (T2DM). METHODS: We retrospectively examined 81 HF patients with T2DM (68 ± 11 years old; 78% male). Plasma amino acid concentrations in a fasting state after stabilization of HF were determined using ultraperformance liquid chromatography. To minimize potential selection bias in the retrospective analyses, the differences in baseline characteristics between patients receiving an SGLT2i and patients not receiving an SGLT2i were controlled by using an inverse probability of treatment weighting (IPTW)-adjusted analysis. RESULTS: Of amino acids measurable in the present assay, plasma ß-aminoisobutyric acid (BAIBA), an exercise-induced myokine-like molecule also known as 3-aminoisobutyric acid or 3-amino-2-methyproponic acid, was detected in 77% of all patients and the proportion of patients in whom plasma BAIBA was detected was significantly higher in patients receiving an SGLT2i than in patients not receiving an SGLT2i (93% vs. 67%, p = 0.01). Analyses in patients in whom plasma BAIBA was detected showed that plasma BAIBA concentration was significantly higher in patients receiving an SGLT2i than in patients not receiving an SGLT2i (6.76 ± 4.72 vs. 4.56 ± 2.93 nmol/ml, p = 0.03). In multivariate logistic regression analyses that were adjusted for age and sex, SGLT2i use was independently associated with BAIBA detection. The independent association between BAIBA and SGLT2i use remained after inclusion of body mass index, HF with reduced ejection fraction, ischemic etiology, renal function, NT-proBNP, albumin, hemoglobin, and HbA1c into the Cox proportional hazards model. When the differences in baseline characteristics between patients receiving an SGLT2i and patients not receiving an SGLT2i were controlled by using an IPTW-adjusted analysis, least squares mean of plasma BAIBA concentration was significantly higher in patients receiving an SGLT2i than in patients not receiving an SGLT2i. CONCLUSION: SGLT2i use is closely associated with increased circulating BAIBA concentration in HF patients with T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Masculino , Persona de Mediana Edad , Anciano , Femenino , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ácidos Aminoisobutíricos , Estudios Retrospectivos , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/inducido químicamente , Glucosa , Sodio
15.
J Mol Cell Cardiol ; 154: 21-31, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33548240

RESUMEN

BACKGROUND: We previously reported that upregulated AMP deaminase (AMPD) contributes to diastolic ventricular dysfunction via depletion of the adenine nucleotide pool in a rat model of type 2 diabetes (T2DM), Otsuka Long-Evans-Tokushima Fatty rats (OLETF). Meanwhile, AMPD promotes the formation of substrates of xanthine oxidoreductase (XOR), which produces ROS as a byproduct. Here, we tested the hypothesis that a functional link between upregulated AMPD and XOR is involved in ventricular dysfunction in T2DM rats. METHODS AND RESULTS: Pressure-volume loop analysis revealed that pressure overloading by phenylephrine infusion induced severer left ventricular diastolic dysfunction (tau: 14.7 ± 0.8 vs 12.5 ± 0.7 msec, left ventricular end-diastolic pressure: 18.3 ± 1.5 vs 12.2 ± 1.3 mmHg, p < 0.05) and ventricular-arterial uncoupling in OLETF than in LETO, non-diabetic rats, though the baseline parameters were comparable in the two groups. While the pressure overload did not affect AMPD activity, it increased XOR activity both in OLETF and LETO, with OLETF showing significantly higher XOR activity than that in LETO (347.2 ± 17.9 vs 243.2 ± 6.1 µg/min/mg). Under the condition of pressure overload, myocardial ATP level was lower, and levels of xanthine and uric acid were higher in OLETF than in LETO. Addition of exogenous inosine, a product of AMP deamination, to the heart homogenates augmented XOR activity. OLETF showed 68% higher tissue ROS levels and 47% reduction in mitochondrial state 3 respiration compared with those in LETO. Overexpression of AMPD3 in H9c2 cells elevated levels of hypoxanthine and ROS and reduced the level of ATP. Inhibition of XOR suppressed the production of tissue ROS and mitochondrial dysfunction and improved ventricular function under the condition of pressure overload in OLETF. CONCLUSIONS: The results suggest that increases in the activity of XOR and the formation of XOR substrates by upregulated AMPD contribute to ROS-mediated diastolic ventricular dysfunction at the time of increased cardiac workload in diabetic hearts.


Asunto(s)
AMP Desaminasa/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Cardiopatías/etiología , Cardiopatías/metabolismo , Cardiopatías/fisiopatología , Disfunción Ventricular Izquierda/fisiopatología , Xantina Deshidrogenasa/efectos adversos , Animales , Biomarcadores , Glucemia , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Cardiopatías/patología , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Mitocondrias Cardíacas/metabolismo , Ratas
16.
J Proteome Res ; 20(4): 2069-2075, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33657805

RESUMEN

Laser microdissection-assisted lectin microarray has been used to obtain quantitative and qualitative information on glycans on proteins expressed in microscopic regions of formalin-fixed paraffin-embedded tissue sections. For the effective visualization of this "tissue glycome mapping" data, a novel online tool, LM-GlycomeAtlas (https://glycosmos.org/lm_glycomeatlas/index), was launched in the freely available glycoscience portal, the GlyCosmos Portal (https://glycosmos.org). In LM-GlycomeAtlas Version 1.0, nine tissues from normal mice were used to provide one data set of glycomic profiles. Here we introduce an updated version of LM-GlycomeAtlas, which includes more spatial information. We designed it to deposit multiple data sets of glycomic profiles with high-resolution histological images, which included staining images with multiple lectins on the array. The additionally implemented interfaces allow users to display multiple histological images of interest (e.g., diseased and normal mice), thereby facilitating the evaluation of tissue glycomic profiling and glyco-pathological analysis. Using these updated interfaces, 451 glycomic profiling data and 42 histological images obtained from 14 tissues of normal and diseased mice were successfully visualized. By easy integration with other tools for glycoproteomic data and protein glycosylation machinery, LM-GlycomeAtlas will be one of the most valuable open resources that contribute to both glycoscience and proteomics communities.


Asunto(s)
Glicómica , Lectinas , Animales , Histocitoquímica , Ratones , Análisis por Micromatrices , Polisacáridos , Proteómica
17.
Glycobiology ; 31(10): 1268-1278, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34192302

RESUMEN

The extent of liver fibrosis predicts prognosis and is important for determining treatment strategies for chronic hepatitis. During the fibrosis progression, serum levels of Mac2 binding protein (M2BP) increase and the N-glycan structure changes to enable binding to Wisteria floribunda agglutinin (WFA) lectin. As a novel diagnostic marker, glycosylation isomer of M2BP (M2BPGi) has been developed. However, its glycan structures recognized by WFA are unclear. In this study, we analyzed site-specific N-glycan structures of serum M2BP using Glyco-RIDGE (Glycan heterogeneity-based Relational IDentification of Glycopeptide signals on Elution profile) method. We evaluated five sample types: (1) M2BP immunoprecipitated from normal healthy sera (NHS-IP(+)), (2) M2BP immunoprecipitated from sera of patients with liver cirrhosis (stage 4; F4-IP(+)), (3) M2BP captured with WFA from serum of patients with liver cirrhosis (stage 4; F4-WFA(+)), (4) recombinant M2BP produced by HEK293 cells (rM2BP) and (5) WFA-captured rM2BP (rM2BP-WFA(+)). In NHS-IP(+) M2BP, bi-antennary N-glycan was the main structure, and LacNAc extended to its branches. In F4-IP(+) M2BP, many branched structures, including tri-antennary and tetra-antennary N-glycans, were found. F4-WFA(+) showed a remarkable increase in branched structures relative to the quantity before enrichment. In recombinant M2BP, both no sialylated-LacdiNAc and -branched LacNAc structures were emerged. The LacdiNAc structure was not found in serum M2BP. Glycosidase-assisted HISCL assays suggest that reactivity with WFA of both serum and recombinant M2BP depends on unsialylated and branched LacNAc and in part of recombinant depends on LacdiNAc. On M2BPGi, the highly branched LacNAc, probably dense cluster of LacNAc, would be recognized by WFA.


Asunto(s)
Antígenos de Neoplasias/química , Biomarcadores de Tumor/química , Cirrosis Hepática/sangre , Lectinas de Plantas/química , Polisacáridos/química , Receptores N-Acetilglucosamina/química , Antígenos de Neoplasias/sangre , Biomarcadores de Tumor/sangre , Células HEK293 , Voluntarios Sanos , Humanos , Lectinas de Plantas/sangre , Polisacáridos/sangre , Análisis por Matrices de Proteínas , Receptores N-Acetilglucosamina/sangre , Proteínas Recombinantes/sangre , Proteínas Recombinantes/química
18.
J Pharmacol Exp Ther ; 376(3): 385-396, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33335015

RESUMEN

Resveratrol affords protection against reactive oxygen species (ROS)-related diseases via activation of SIRT1, an NAD+-dependent deacetylase. However, the low bioavailability of resveratrol limits its therapeutic applications. Since piceatannol is a hydroxyl analog of resveratrol with higher bioavailability, it could be an alternative to resveratrol. In this study, we compared the cytotoxicity, antioxidative activity, and mechanisms of cytoprotection of piceatannol with those of resveratrol. In C2C12 cells incubated with piceatannol, electrospray ionization mass spectrometry analysis showed that piceatannol was present in the intracellular fraction. A high concentration (50 µM) of piceatannol, but not resveratrol, induced mitochondrial depolarization and apoptosis. However, piceatannol at 10 µM inhibited the increase in mitochondrial ROS level induced by antimycin A, and this ROS reduction was greater than that by resveratrol. The reduction in hydrogen peroxide-induced ROS by piceatannol was also greater than that by resveratrol or vitamin C. Piceatannol reduced antimycin A-induced apoptosis more than did resveratrol. SIRT1 knockdown abolished the antiapoptotic activity of resveratrol, whereas it blocked only half of the antiapoptotic activity of piceatannol. Piceatannol, but not resveratrol, induced heme oxygenase-1 (HO1) expression, which was blocked by knockdown of the transcription factor NRF2, but not by SIRT1 knockdown. HO1 knockdown partially blocked the reduction of ROS by piceatannol. Furthermore, the antiapoptotic action of piceatannol was abolished by HO1 knockdown. Our results suggest that the therapeutic dose of piceatannol protects cells against mitochondrial ROS more than does resveratrol via SIRT1- and NRF2/HO1-dependent mechanisms. The activation of NRF2/HO1 could be an advantage of piceatannol compared with resveratrol for cytoprotection. SIGNIFICANCE STATEMENT: This study showed that piceatannol and resveratrol were different in cytotoxicity, oxidant-scavenging activities, and mechanisms of cytoprotection. Protection by piceatannol against apoptosis induced by reactive oxygen species was superior to that by resveratrol. In addition to the sirtuin 1-dependent pathway, piceatannol exerted nuclear factor erythroid 2-related factor 2/heme oxygenase-1-mediated antioxidative and antiapoptotic effects, which could be an advantage of piceatannol compared with resveratrol.


Asunto(s)
Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Resveratrol/farmacología , Estilbenos/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Hemo-Oxigenasa 1/metabolismo , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 1/metabolismo , Regulación hacia Arriba/efectos de los fármacos
19.
BMC Neurol ; 21(1): 169, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33882882

RESUMEN

BACKGROUND: The physiological and pathological significance of the arachnoid membrane (AM) is still unknown. In this study, we investigated various characteristics of the AM, focusing on the influence of inflammation and fibrosis. METHODS: Small pieces of AM sample were obtained during neurosurgical procedures from 74 cases. The clinical and pathological characteristics of the hyperplastic AM group (≥ 50 µm) and the non-hyperplastic AM group (< 50 µm) were compared. Then, potential correlations between AM thickness and clinical characteristics were analyzed. Moreover, VEGFα, TGFß, and TGFα levels were quantitated by real time PCR. Then, the potential correlations between AM thickness and these inflammatory or anti-inflammatory markers, and the influence of the original disease were calculated. RESULTS: The median age of the patients in hyperplastic AM group was significantly older than that of the non-hyperplastic AM group. Moreover, the number of fibroblasts, CD68+ cells, CD86+ cells, and CD206+ cells in the hyperplastic AM group was significantly higher than that in the non-hyperplastic AM group. The AM thickness was significantly correlated to age and number of fibroblasts, CD68+ cells, CD86+ cells, and CD206+ cells. The thickness of the AM was significantly correlated to the messenger RNA expression levels of VEGFα (ρ = 0.337), and the VEGFα expression levels were significantly correlated with TGFß and TNFα. CONCLUSIONS: The AM hyperplasia was influenced by aging and could be a result of inflammation and fibrosis through cytokine secretion from the inflammatory cells and fibroblasts in the AM.


Asunto(s)
Envejecimiento/patología , Aracnoides/patología , Inflamación/patología , Adulto , Anciano , Femenino , Fibrosis/patología , Humanos , Masculino , Persona de Mediana Edad
20.
J Pharmacol Sci ; 145(2): 187-197, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33451753

RESUMEN

Roles of the renin-angiotensin system in autophagy and ischemia/reperfusion (I/R) injury in the kidney have not been fully characterized. Here we examined the hypothesis that modest activation of the angiotensin II (Ang II) receptor upregulates autophagy and increases renal tolerance to I/R injury. Sprague-Dawley rats were assigned to treatment with a vehicle or a non-pressor dose of Ang II (200 ng/kg/min) for 72 h before 30-min renal I/R. LC3-immunohistochemistry showed that Ang II treatment increased autophagosomes in proximal tubular cells by 2.7 fold. In Ang II-pretreated rats, autophagosomes were increased by 2.5 fold compared to those in vehicle-treated rats at 4 h after I/R, when phosphorylation of Akt and S6 was suppressed and ULK1-Ser555 phosphorylation was increased. Serum creatinine and urea nitrogen levels, incidence of oliguria, and histological score of tubular necrosis at 24 h after I/R were attenuated by Ang II-pretreatment. In NRK-52E cells, Ang II induced LC3-II upregulation, which was inhibited by losartan but not by A779. The results indicate that a non-pressor dose of Ang-II promotes autophagy via ULK1-mediated signaling in renal tubular cells and attenuates renal I/R injury. The AT1 receptor, but not the Mas receptor, contributes to Ang-II-induced autophagy and presumably also to the renoprotection.


Asunto(s)
Angiotensina II/administración & dosificación , Angiotensina II/farmacología , Autofagia/efectos de los fármacos , Túbulos Renales Proximales/citología , Receptores de Angiotensina/metabolismo , Receptores de Angiotensina/fisiología , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Animales , Autofagia/genética , Células Cultivadas , Masculino , Ratas Sprague-Dawley , Sistema Renina-Angiotensina/fisiología , Daño por Reperfusión/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA