Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Cell ; 15(3): 1112-23, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14999087

RESUMEN

Stem-loop binding protein (SLBP) is an essential component of the histone pre-mRNA processing machinery. SLBP protein expression was examined during Drosophila development by using transgenes expressing hemagglutinin (HA) epitope-tagged proteins expressed from the endogenous Slbp promoter. Full-length HA-dSLBP complemented a Slbp null mutation, demonstrating that it was fully functional. dSLBP protein accumulates throughout the cell cycle, in contrast to the observed restriction of mammalian SLBP to S phase. dSLBP is located in both nucleus and cytoplasm in replicating cells, but it becomes predominantly nuclear during G2. dSLBP is present in mitotic cells and is down-regulated in G1 when cells exit the cell cycle. We determined whether mutation at previously identified phosphorylation sites, T120 and T230, affected the ability of the protein to restore viability and histone mRNA processing to dSLBP null mutants. The T120A SLBP restored viability and histone pre-mRNA processing. However, the T230A mutant, located in a conserved TPNK sequence in the RNA binding domain, did not restore viability and histone mRNA processing in vivo, although it had full activity in histone mRNA processing in vitro. The T230A protein is concentrated in the cytoplasm, suggesting that it is defective in nuclear targeting, and accounting for its failure to function in histone pre-mRNA processing in vivo.


Asunto(s)
Ciclo Celular/fisiología , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Drosophila melanogaster/embriología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Histonas/metabolismo , Mutación/genética , Fosforilación , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN/fisiología , ARN Mensajero/metabolismo
2.
RNA ; 12(12): 2103-17, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17135487

RESUMEN

The DnaQ-H family exonuclease Snipper (Snp) is a 33-kDa Drosophila melanogaster homolog of 3'hExo and ERI-1, exoribonucleases implicated in the degradation of histone mRNA in mammals and in the negative regulation of RNA interference (RNAi) in Caenorhabditis elegans, respectively. In metazoans, Snp, Exod1, 3'hExo, ERI-1, and the prpip nucleases define a new subclass of structure-specific 3'-5' exonucleases that bind and degrade double-stranded RNA and/or DNA substrates with 3' overhangs of 2-5 nucleotides (nt) in the presence of Mg2+ with no apparent sequence specificity. These nucleases are also capable of degrading linear substrates. Snp efficiently degrades structured RNA and DNA substrates as long as there exists a minimum 3' overhang of 2 nt to initiate degradation. We identified a Snp mutant and used it to test whether Snp plays a role in regulating histone mRNA degradation or RNAi in vivo. Snp mutant flies are viable, and display no obvious developmental abnormalities. The expression pattern and level of histone H3 mRNA in Snp mutant embryos and third instar imaginal eye discs was indistinguishable from wild type, suggesting that Snp does not play a significant role in the turnover of histone mRNA at the end of the S phase. The loss of Snp was also unable to enhance the silencing capability of two different RNAi transgenes targeting the white and yellow genes, suggesting that Snp does not negatively modulate RNAi. Therefore, Snp is a nonessential exonuclease that is not a functional ortholog of either 3'hExo or ERI-1.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Exonucleasas/genética , Exonucleasas/metabolismo , Secuencia de Aminoácidos , Animales , Apoptosis/fisiología , Desoxirribonucleasas/genética , Desoxirribonucleasas/metabolismo , Drosophila melanogaster/genética , Fase G2/genética , Regulación del Desarrollo de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Datos de Secuencia Molecular , Mutación , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fase S/genética , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
3.
RNA ; 12(3): 396-409, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16495235

RESUMEN

Metazoan replication-dependent histone mRNAs are not polyadenylated, and instead terminate in a conserved stem-loop structure generated by an endonucleolytic cleavage involving the U7 snRNP, which interacts with histone pre-mRNAs through base-pairing between U7 snRNA and a purine-rich sequence in the pre-mRNA located downstream of the cleavage site. Here we generate null mutations of the single Drosophila U7 gene and demonstrate that U7 snRNA is required in vivo for processing all replication-associated histone pre-mRNAs. Mutation of U7 results in the production of poly A+ histone mRNA in both proliferating and endocycling cells because of read-through to cryptic polyadenylation sites found downstream of each Drosophila histone gene. A similar molecular phenotype also results from mutation of Slbp, which encodes the protein that binds the histone mRNA 3' stem-loop. U7 null mutants develop into sterile males and females, and these females display defects during oogenesis similar to germ line clones of Slbp null cells. In contrast to U7 mutants, Slbp null mutations cause lethality. This may reflect a later onset of the histone pre-mRNA processing defect in U7 mutants compared to Slbp mutants, due to maternal stores of U7 snRNA. A double mutant combination of a viable, hypomorphic Slbp allele and a viable U7 null allele is lethal, and these double mutants express polyadenylated histone mRNAs earlier in development than either single mutant. These data suggest that SLBP and U7 snRNP cooperate in the production of histone mRNA in vivo, and that disruption of histone pre-mRNA processing is detrimental to development.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Drosophila/metabolismo , Histonas/genética , Oogénesis/genética , Oogénesis/fisiología , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Animales , Secuencia de Bases , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/metabolismo , Femenino , Genes de Insecto , Histonas/metabolismo , Infertilidad Femenina/genética , Infertilidad Femenina/metabolismo , Datos de Secuencia Molecular , Mutación , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
4.
Dev Biol ; 274(1): 82-93, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15355790

RESUMEN

Metazoan replication-dependent histone mRNAs accumulate to high levels during S phase as a result of an increase in the rate of histone gene transcription, pre-mRNA processing, and mRNA stability at the G1-S transition. However, relatively little is known about the contribution of these processes to histone expression in the cell cycles of early development, which often lack a G1 phase. In post-blastoderm Drosophila embryos, zygotic expression of the stg(cdc25) phosphatase in G2 activates cyclin/cdc2 kinases and triggers mitosis. Here we show that histone transcription initiates in late G2 of cycle 14 in response to stg(cdc25) and in anticipation of S phase of the next cycle, which occurs immediately following mitosis. Mutation of stg(cdc25) arrests cells in G2 and prevents histone transcription. Expression of a mutant form of Cdc2 that bypasses the requirement for stg(cdc25) activates histone transcription during G2 in stg(cdc25) mutant embryos. Thus, in these embryonic cycles, histone transcription is controlled by the principal G2-M regulators, string(cdc25), and cdc2 kinase, rather than solely by regulators of the G1-S transition. After the introduction of G1-S control midway through embryogenesis, histone expression depends on DNA replication and the function of cyclin E, and no longer requires stg(cdc25). Thus, during the altered cell cycles of early animal development, different cell cycle mechanisms are employed to ensure that the production of histones accompanies DNA synthesis.


Asunto(s)
Ciclina E/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Bromodesoxiuridina , Proteína Quinasa CDC2/metabolismo , Ciclo Celular/fisiología , Proteínas de Ciclo Celular , Cartilla de ADN , Replicación del ADN/fisiología , Drosophila/metabolismo , Hibridación in Situ , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA