Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Integr Plant Biol ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888228

RESUMEN

Callose, a ß-1,3-glucan plant cell wall polymer, regulates symplasmic channel size at plasmodesmata (PD) and plays a crucial role in a variety of plant processes. However, elucidating the molecular mechanism of PD callose homeostasis is limited. We screened and identified an Arabidopsis mutant plant with excessive callose deposition at PD and found that the mutated gene was α1-COP, a member of the coat protein I (COPI) coatomer complex. We report that loss of function of α1-COP elevates the callose accumulation at PD by affecting subcellular protein localization of callose degradation enzyme PdBG2. This process is linked to the functions of ERH1, an inositol phosphoryl ceramide synthase, and glucosylceramide synthase through physical interactions with the α1-COP protein. Additionally, the loss of function of α1-COP alters the subcellular localization of ERH1 and GCS proteins, resulting in a reduction of GlcCers and GlcHCers molecules, which are key sphingolipid (SL) species for lipid raft formation. Our findings suggest that α1-COP protein, together with SL modifiers controlling lipid raft compositions, regulates the subcellular localization of GPI-anchored PDBG2 proteins, and hence the callose turnover at PD and symplasmic movement of biomolecules. Our findings provide the first key clue to link the COPI-mediated intracellular trafficking pathway to the callose-mediated intercellular signaling pathway through PD.

2.
Mol Plant Microbe Interact ; 33(8): 1072-1079, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32370644

RESUMEN

The compound 2,4-diacetylphloroglucinol (DAPG) is a well-known secondary metabolite produced by Pseudomonas spp. that are used as biocontrol agents. DAPG displays a remarkably broad spectrum of toxic activity against pathogens of plants. Yet high concentrations of DAPG may also have negative effect on plants, but the phytotoxicity of DAPG is not clearly understood. Here, we used genome-wide activation, tagging Arabidopsis plants as the model plant to investigate the plant response to DAPG. A total of 15 lines were selected as DAPG-tolerant plants from among 62,000 lines investigated. The DAPG-responsible genes were then identified via thermal asymmetric interlaced PCR and quantitative reverse transcription PCR, and the gene ontology analysis showed the distribution of these genes having different biological processes, cellular regulations, and molecular functional properties. Collectively, these findings suggest that plants may rely on several pathways to prevent DAPG phytotoxicity.


Asunto(s)
Arabidopsis , Floroglucinol/análogos & derivados , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Genes de Plantas , Floroglucinol/toxicidad , Pseudomonas
3.
J Nat Prod ; 83(2): 277-285, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32073848

RESUMEN

The cultivation of a Streptomyces sp. SD53 strain isolated from the gut of the silkworm Bombyx mori produced two macrolactam natural products, piceamycin (1) and bombyxamycin C (2). The planar structures of 1 and 2 were identified by a combination of NMR, MS, and UV spectroscopic analyses. The absolute configurations were assigned based on chemical and chromatographic methods as well as ECD calculations. A new chromatography-based experimental method for determining the configurations of stereogenic centers ß to nitrogen atoms in macrolactams was established and successfully applied in this report. These compounds exhibited significant bioactivities against the silkworm entomopathogen Bacillus thuringiensis and various human pathogens as well as human cancer cell lines. In particular, piceamycin potently inhibited Salmonella enterica and Proteus hauseri with MIC values of 0.083 µg/mL and 0.025 µg/mL, respectively. The biosynthetic pathway involved in the formation of the cyclopentenone moiety in piceamycin is discussed.


Asunto(s)
Antibacterianos/farmacología , Productos Biológicos/química , Lactamas Macrocíclicas/química , Streptomyces/química , Antibacterianos/química , Productos Biológicos/metabolismo , Vías Biosintéticas , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Proteus/química , Estereoisomerismo
4.
Asian-Australas J Anim Sci ; 33(6): 949-956, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32054235

RESUMEN

OBJECTIVE: This study was conducted to confirm the effects of new inoculants producing-antifungal or esterase substances on rye silage and its rumen fermentation indices by comparing wild with mutated types. METHODS: Rye harvested at dough stage was ensiled into 3 L mini bucket silo (1 kg) for 90 d in triplicate following: distilled water at 20 µL/g (CON); Lactobacillus brevis 100D8 (AT) and its inactivation of antifungal genes (AT-m) at 1.2×105 cfu/g, respectively; and Leuconostoc holzapfelii 5H4 (FD) and its inactivation of esterase genes (FD-est) at 1.0×105 cfu/g, respectively. After silo opened, silage was sub-sampled for the analysis of ensiling quality and its rumen fermentation indices. RESULTS: Among the wild type inoculants (CON vs AT vs FD), FD inoculant had higher (p<0.05) in vitro digestibilities of dry matter and neutral detergent fiber, the total degradable fraction, and total volatile fatty acid in rumen, while AT inoculant had higher (p<0.05) lactate, acetate, and lactic acid bacteria in silage. Silage pH and the potentially degradable fraction in rumen increased (p<0.05) by inactivation of antifungal activity (AT vs AT-m), but lactate, acetate, and lactic acid bacteria of silage decreased (p<0.05). In silage, acetate increased (p<0.05) by inactivation of esterase activity (FD vs FD-est) with decreases (p<0.05) of pH, ammonia-N, lactate, and yeast. Moreover, inactivation of esterase activity clearly decreased (p<0.05) in vitro digestibilities of dry matter and neutral detergent fiber, the total degradable fraction, and total volatile fatty acid in the rumen. CONCLUSION: This study concluded that FD inoculant confirmed esterase activity on rye silage harvested at dough stage, while AT inoculant could not be confirmed with antifungal activity due to the absence of mold in all silages.

5.
Mol Plant Microbe Interact ; 32(3): 306-312, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30256170

RESUMEN

Streptomyces griseus S4-7 is representative of strains responsible for the specific soil suppressiveness of Fusarium wilt of strawberry caused by Fusarium oxysporum f. sp. fragariae. Members of the genus Streptomyces secrete diverse secondary metabolites including lantipeptides, heat-stable lanthionine-containing compounds that can exhibit antibiotic activity. In this study, a class II lantipeptide provisionally named grisin, of previously unknown biological function, was shown to inhibit F. oxysporum. The inhibitory activity of grisin distinguishes it from other class II lantipeptides from Streptomyces spp. Results of quantitative reverse transcription-polymerase chain reaction with lanM-specific primers showed that the density of grisin-producing Streptomyces spp. in the rhizosphere of strawberry was positively correlated with the number of years of monoculture and a minimum of seven years was required for development of specific soil suppressiveness to Fusarium wilt disease. We suggest that lanM can be used as a diagnostic marker of whether a soil is conducive or suppressive to the disease.


Asunto(s)
Fragaria , Fusarium , Microbiología del Suelo , Suelo/química , Antibacterianos/metabolismo , Fragaria/microbiología , Enfermedades de las Plantas/prevención & control , Estreptotricinas/metabolismo
6.
World J Microbiol Biotechnol ; 35(8): 128, 2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31375920

RESUMEN

Large patch disease, caused by Rhizoctonia solani AG2-2, is the most devastating disease in Zoysiagrass (Zoysia japonica). Current large patch disease control strategies rely primarily upon the use of chemical pesticides. Streptomyces sp. S8 is known to possess exceptional antagonistic properties that could potentially suppress the large patch pathogen found at turfgrass plantations. This study aims to demonstrate the feasibility of using the strain as a biological control mechanism. Sequencing of the S8 strain genome revealed a valinomycin biosynthesis gene cluster. This cluster is composed of the vlm1 and vlm2 genes, which are known to produce antifungal compounds. In order to verify this finding for the large patch pathogen, a valinomycin biosynthesis knockout mutant was created via the CRISPR/Cas9 system. The mutant lost antifungal activity against the large patch pathogen. Consequently, it is anticipated that eco-friendly microbial preparations derived from the S8 strain can be utilized to biologically control large patch disease.


Asunto(s)
Antifúngicos/metabolismo , Antifúngicos/farmacología , Rhizoctonia/efectos de los fármacos , Streptomyces/metabolismo , Valinomicina/metabolismo , Valinomicina/farmacología , Vías Biosintéticas/genética , Técnicas de Inactivación de Genes , Genoma Bacteriano , Familia de Multigenes , Control Biológico de Vectores/métodos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Poaceae/microbiología , Rhizoctonia/crecimiento & desarrollo , Análisis de Secuencia de ADN , Streptomyces/genética
7.
Proteomics ; 16(1): 122-35, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26460066

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) facilitate the plant growth and enhance their induced systemic resistance (ISR) against a variety of environmental stresses. In this study, we carried out integrative analyses on the proteome, transcriptome, and metabolome to investigate Arabidopsis root and shoot responses to the well-known PGPR strain Paenibacillus polymyxa (P. polymyxa) E681. Shoot fresh and root dry weights were increased, whereas root length was decreased by treatment with P. polymyxa E681. 2DE approach in conjunction with MALDI-TOF/TOF analysis revealed a total of 41 (17 spots in root, 24 spots in shoot) that were differentially expressed in response to P. polymyxa E681. Biological process- and molecular function-based bioinformatics analysis resulted in their classification into seven different protein groups. Of these, 36 proteins including amino acid metabolism, antioxidant, defense and stress response, photosynthesis, and plant hormone-related proteins were up-regulated, whereas five proteins including three carbohydrate metabolism- and one amino acid metabolism-related, and one unknown protein were down-regulated, respectively. A good correlation was observed between protein and transcript abundances for the 12 differentially expressed proteins during interactions as determined by qPCR analysis. Metabolite analysis using LC-MS/MS revealed highly increased levels of tryptophan, indole-3-acetonitrile (IAN), indole-3-acetic acid (IAA), and camalexin in the treated plants. Arabidopsis plant inoculated P. polymyxa E681 also showed resistance to Botrytis cinerea infection. Taken together these results suggest that P. polymyxa E681 may promote plant growth by induced metabolism and activation of defense-related proteins against fungal pathogen.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Paenibacillus/fisiología , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/genética , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Genómica , Metabolómica , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/microbiología , Brotes de la Planta/fisiología , Proteómica , Simbiosis , Transcriptoma
8.
Planta ; 244(6): 1229-1240, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27510723

RESUMEN

MAIN CONCLUSION: Genome-wide screening of Saccharomyces cerevisiae revealed that signaling pathways related to the alkaline pH stress contribute to resistance to plant antimicrobial peptide, Pn-AMP1. Plant antimicrobial peptides (AMPs) are considered to be promising candidates for controlling phytopathogens. Pn-AMP1 is a hevein-type plant AMP that shows potent and broad-spectrum antifungal activity. Genome-wide chemogenomic screening was performed using heterozygous and homozygous diploid deletion pools of Saccharomyces cerevisiae as a chemogenetic model system to identify genes whose deletion conferred enhanced sensitivity to Pn-AMP1. This assay identified 44 deletion strains with fitness defects in the presence of Pn-AMP1. Strong fitness defects were observed in strains with deletions of genes encoding components of several pathways and complex known to participate in the adaptive response to alkaline pH stress, including the cell wall integrity (CWI), calcineurin/Crz1, Rim101, SNF1 pathways and endosomal sorting complex required for transport (ESCRT complex). Gene ontology (GO) enrichment analysis of these genes revealed that the most highly overrepresented GO term was "cellular response to alkaline pH". We found that 32 of the 44 deletion strains tested (72 %) showed significant growth defects compared with their wild type at alkaline pH. Furthermore, 9 deletion strains (20 %) exhibited enhanced sensitivity to Pn-AMP1 at ambient pH compared to acidic pH. Although several hundred plant AMPs have been reported, their modes of action remain largely uncharacterized. This study demonstrates that the signaling pathways that coordinate the adaptive response to alkaline pH also confer resistance to a hevein-type plant AMP in S. cerevisiae. Our findings have broad implications for the design of novel and potent antifungal agents.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas de Plantas/fisiología , Saccharomyces cerevisiae/metabolismo , Transducción de Señal/fisiología , Péptidos Catiónicos Antimicrobianos/fisiología , Estudio de Asociación del Genoma Completo , Concentración de Iones de Hidrógeno , Inmunidad de la Planta/fisiología , Lectinas de Plantas/metabolismo , Lectinas de Plantas/fisiología , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/fisiología
9.
Plant Pathol J ; 40(3): 322-328, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38835303

RESUMEN

Soybean (Glycine max), a crucial global crop, experiences yearly yield reduction due to diseases such as anthracnose (Colletotrichum truncatum) and root rot (Fusarium spp.). The use of fungicides, which have traditionally been employed to control these phytopathogens, is now facing challenges due to the emergence of fungicide-resistant strains. Streptomyces bacillaris S8 strain S8 is previously known to produce valinomycin t through a nonribosomal peptide synthetase (NRPS) pathway. The objective of this study was to evaluate the antifungal activity of S. bacillaris S8 against C. truncatum and Fusarium sp., assessing its efficacy against soybean pathogens. The results indicate that strain S8 effectively controlled both above-ground and underground soybean diseases, using the NRPS and NRPS-related compound, suggesting its potential as a biological control in plant-microbe interactions. These findings underscore the pivotal role of the stain S8 in fostering healthy soybean microbial communities and emphasize the significance of microbiota structure studies in unveiling potent biocontrol agents.

10.
Plant Pathol J ; 40(2): 205-217, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38606449

RESUMEN

Brown rot disease, caused by Monilinia spp., poses a significant threat to pome and stone fruit crops globally, resulting in substantial economic losses during pre- and post-harvest stages. Monilinia fructigena, M. laxa, and M. fructicola are identified as the key agents responsible for brown rot disease. In this study, we employed the amplified fragment length polymorphism (AFLP) method to assess the genetic diversity of 86 strains of Monilinia spp. isolated from major stone fruit cultivation regions in South Korea. Specifically, strains were collected from Chungcheong, Gangwon, Gyeonggi, Gyeongsang, and Jeolla provinces (-do). A comparative analysis of strain characteristics, such as isolation locations, host plants, and responses to chemical fungicides, was conducted. AFLP phylogenetic classification using 20 primer pairs revealed the presence of three distinct groups, with strains from Jeolla province consistently forming a separate group at a high frequency. Furthermore, M. fructicola was divided into three groups by the AFLP pattern. Principal coordinate analysis and PERMANOVA were applied to compare strain information, such as origin, host, and fungicide sensitivity, revealing significant partition patterns for AFLP according to geographic origin and host plants. This study represents the utilization of AFLP methodology to investigate the genetic variability among M. fructicol isolates, highlighting the importance of continuous monitoring and management of variations in the brown rot pathogen.

11.
BMC Genomics ; 14 Suppl 1: S6, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23368702

RESUMEN

BACKGROUND: Yeast deletion-mutant collections have been successfully used to infer the mode-of-action of drugs especially by profiling chemical-genetic and genetic-genetic interactions on a genome-wide scale. Although tens of thousands of those profiles are publicly available, a lack of an accurate method for mining such data has been a major bottleneck for more widespread use of these useful resources. RESULTS: For general usage of those public resources, we designed FitRankDB as a general repository of fitness profiles, and developed a new search algorithm, FitSearch, for identifying the profiles that have a high similarity score with statistical significance for a given fitness profile. We demonstrated that our new repository and algorithm are highly beneficial to researchers who attempting to make hypotheses based on unknown modes-of-action of bioactive compounds, regardless of the types of experiments that have been performed using yeast deletion-mutant collection in various types of different measurement platforms, especially non-chip-based platforms. CONCLUSIONS: We showed that our new database and algorithm are useful when attempting to construct a hypothesis regarding the unknown function of a bioactive compound through small-scale experiments with a yeast deletion collection in a platform independent manner. The FitRankDB and FitSearch enhance the ease of searching public yeast fitness profiles and obtaining insights into unknown mechanisms of action of drugs. FitSearch is freely available at http://fitsearch.kaist.ac.kr.


Asunto(s)
Saccharomyces cerevisiae/genética , Motor de Búsqueda , Bases de Datos Genéticas , Genes Fúngicos , Internet , Interfaz Usuario-Computador
12.
Environ Microbiol ; 15(3): 675-86, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22882648

RESUMEN

Phenazine compounds represent a large class of bacterial metabolites that are produced by some fluorescent Pseudomonas spp. and a few other bacterial genera. Phenazines were first noted in the scientific literature over 100 years ago, but for a long time were considered to be pigments of uncertain function. Following evidence that phenazines act as virulence factors in the opportunistic human and animal pathogen Pseudomonas aeruginosa and are actively involved in the suppression of plant pathogens, interest in these compounds has broadened to include investigations of their genetics, biosynthesis, activity as electron shuttles, and contribution to the ecology and physiology of the cells that produce them. This minireview highlights some recent and exciting insights into the diversity, frequency and ecological roles of phenazines produced by fluorescent Pseudomonas spp.


Asunto(s)
Ecosistema , Fenazinas/metabolismo , Pseudomonas/fisiología , Animales , Biopelículas , Ambiente , Microbiología Ambiental , Fluorescencia , Pigmentos Biológicos/genética , Pigmentos Biológicos/metabolismo , Pseudomonas/enzimología , Pseudomonas/genética , Pseudomonas/metabolismo , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiología
13.
Biochem Biophys Res Commun ; 436(4): 613-8, 2013 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-23764396

RESUMEN

Genome-wide chemical genetic profiles in Saccharomyces cerevisiae since the budding yeast deletion library construction have been successfully used to reveal unknown mode-of-actions of drugs. Here, we introduce comparative approach to infer drug target proteins more accurately using two compendiums of chemical-genetic profiles from the budding yeast S. cerevisiae and the fission yeast Schizosaccharomyces pombe. For the first time, we established DNA-chip based growth defect measurement of genome-wide deletion strains of S. pombe, and then applied 47 drugs to the pooled heterozygous deletion strains to generate chemical-genetic profiles in S. pombe. In our approach, putative drug targets were inferred from strains hypersensitive to given drugs by analyzing S. pombe and S. cerevisiae compendiums. Notably, many evidences in the literature revealed that the inferred target genes of fungicide and bactericide identified by such comparative approach are in fact the direct targets. Furthermore, by filtering out the genes with no essentiality, the multi-drug sensitivity genes, and the genes with less eukaryotic conservation, we created a set of drug target gene candidates that are expected to be directly affected by a given drug in human cells. Our study demonstrated that it is highly beneficial to construct the multiple compendiums of chemical genetic profiles using many different species. The fission yeast chemical-genetic compendium is available at http://pombe.kaist.ac.kr/compendium.


Asunto(s)
Bases de Datos Genéticas , Genes Fúngicos , Schizosaccharomyces/genética , Evolución Molecular , Haploinsuficiencia , Internet , Schizosaccharomyces/efectos de los fármacos
14.
J Sci Food Agric ; 93(12): 3081-6, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23526300

RESUMEN

BACKGROUND: Soybean sprouts (Kongnamool) are one of the most popular and nutritive traditional vegetables in East Asia. Anthracnose caused by Colletotrichum gloeosporioides is one of the most serious diseases of soybean sprouts. In order to obtain basic information for breeding and/or selecting soybean genotypes with increased natural defense against anthracnose, phenolic compounds were profiled for healthy and infected soybean (Glycine max Merr.) sprouts by using high-performance liquid chromatography coupled with tandem mass spectrometry. RESULTS: Tryptophan and eight phenolic compounds (daidzin, genistin, malonyldaidzin, malonylgenistin, daidzein, glycitein, genistein and coumestrol) were determined from healthy and inoculated sprouts. Total identified phenolic content was 40.02 ± 0.03 mg kg⁻¹, 99.4% of which was isoflavones. CONCLUSION: The monitoring suggested that de novo induced glycitein appeared to act as a phytoalexin in the defence mechanism of the soybean sprouts against C. gloeosporioides, and constitutively formed seven phenolic components that functioned as phytoanticipins in the diseased soybean sprouts.


Asunto(s)
Colletotrichum/crecimiento & desarrollo , Glycine max/metabolismo , Glycine max/microbiología , Isoflavonas/biosíntesis , Enfermedades de las Plantas/microbiología , Plantones/metabolismo , Plantones/microbiología , Antifúngicos/análisis , Antifúngicos/química , Antifúngicos/metabolismo , Antifúngicos/farmacología , Cromatografía Líquida de Alta Presión , Colletotrichum/efectos de los fármacos , Colletotrichum/inmunología , Germinación , Glucósidos/análisis , Glucósidos/biosíntesis , Glucósidos/química , Glucósidos/farmacología , Isoflavonas/análisis , Isoflavonas/química , Isoflavonas/farmacología , Pruebas de Sensibilidad Microbiana , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Micelio/inmunología , Fenoles/análisis , Fenoles/química , Fenoles/metabolismo , Fenoles/farmacología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , República de Corea , Plantones/crecimiento & desarrollo , Plantones/inmunología , Sesquiterpenos/análisis , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Sesquiterpenos/farmacología , Glycine max/crecimiento & desarrollo , Glycine max/inmunología , Espectrometría de Masa por Ionización de Electrospray , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/inmunología , Espectrometría de Masas en Tándem , Fitoalexinas
15.
Front Microbiol ; 14: 1180538, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37362924

RESUMEN

Endophyte bacteria, which colonize plants including roots, stem, flower, and fruit, it can derive their nutrients from the host, are recognized for their mutualistic relationship with the host plant. They play a critical role in promoting host growth and modulating abiotic stress. Carbon and nitrogen have a significant impact on bacterial population and secondary metabolite production, which are highly specific in various categories such as bacterial growth regulation, anti-compounds production. Application of L-glutamic acid can significantly enhance Streptomyces globisporus population buildup in plants. However, the effectiveness of this population buildup against abiotic stresses such as salinity and drought has not been investigated. Therefore, in this study, we tested the bacteria and their prebiotic activity against salinity and drought stress in tomato plants. Three different amino acids were treated on the tomato plants, and it was observed that L-asparagine and L-proline had a negative effect on plant growth and phenotype, while L-glutamic acid promoted plant growth and increased bacteria population density. The bacteria were found to colonize the rhizosphere and root endosphere, with colonization being promoted by L-glutamic acid. Additionally, Streptomyces was found to have plant growth promotion effects and provided protection against abiotic stresses. Interestingly, L-glutamic acid reduced the damage caused by salinity stress, but not drought stress. These findings suggest that L-glutamic acid plays a role in providing tolerance to salinity stress with the core microbiota, thus the current study demonstrated their prebiotic activity in the agriculture system.

16.
Microbiol Spectr ; 11(4): e0115023, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37404179

RESUMEN

Ginseng is a popular medicinal herb with established therapeutic effects such as cardiovascular disease prevention, anticancer effects, and anti-inflammatory effects. However, the slow growth of ginseng due to soilborne pathogens has been a challenge for establishing new plantations. In this study, we investigated root rot disease associated with the microbiota in a ginseng monoculture model system. Our results showed that a collapse of the early microbiota community inhibiting root rot disease was observed before the disease became severe, and nitrogen fixation was necessary to support the initial microbiota community structure. Furthermore, changes in the nitrogen composition were essential for the suppression of pathogen activity in early monoculture soils. We hypothesize that Pseudomonadaceae, a population built up by aspartic acid, can inhibit the occurrence of root rot disease in ginseng and that specific management practices that maintain a healthy microbiome can be implemented to prevent and mitigate the disease. Our findings provide insights into the potential use of specific members of the microbiota for controlling root rot disease in ginseng cultivation. IMPORTANCE Understanding the initial soil microbiota and community shifts in a monoculture system is critical for developing disease-suppressive soils for crop production. The lack of resistance genes against soilborne pathogens in plants highlights the need for effective management strategies. Our investigation of root rot disease and initial microbiota community shifts in a ginseng monoculture model system provides valuable insight into the development of conducive soil into specific suppressive soil. With a thorough understanding of the microbiota in disease-conducive soil, we can work toward the development of disease-suppressive soil to prevent outbreaks and ensure sustainable crop production.


Asunto(s)
Panax , Suelo , Suelo/química , Pseudomonadaceae , Microbiología del Suelo , Enfermedades de las Plantas/prevención & control
17.
Plant Pathol J ; 39(6): 566-574, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38081316

RESUMEN

The aim of this study was to investigate the regulation of lantipeptide production in Streptomyces globisporus SP6C4, which produces the novel antifungal lantipeptides conprimycin and grisin, and to identify the role of cytochrome P450 (P450) in tis regulation. To investigate the regulation of lantipeptide production, we created gene deletion mutants, including ΔP450, ΔtsrD, ΔlanM, ΔP450ΔtsrD, and ΔP450ΔlanM. These mutants were characterized in terms of their morphology, sporulation, attachment, and antifungal activity against Fusarium oxysporum. The gene deletion mutants showed distinct characteristics compared to the wild-type strain. Among them, the ΔP450ΔlanM double mutant exhibited a recovery of antifungal activity against F. oxysporum, indicating that P450 plays a significant role in regulating lantipeptide production in S. globisporus SP6C4. Our findings highlight the significant role of P450 in the regulation of lantipeptide production and morphological processes in S. globisporus. The results suggest a potential link between P450-mediated metabolic pathways and the regulation of growth and secondary metabolism in SP6C4, thereby highlighting P450 as a putative target for the development of new antifungal agents.

18.
Plant Pathol J ; 39(3): 245-254, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37291765

RESUMEN

The plant microbiota plays a crucial role in promoting plant health by facilitating the nutrient acquisition, abiotic stress tolerance, biotic stress resilience, and host immune regulation. Despite decades of research efforts, the precise relationship and function between plants and microorganisms remain unclear. Kiwifruit (Actinidia spp.) is a widely cultivated horticultural crop known for its high vitamin C, potassium, and phytochemical content. In this study, we investigated the microbial communities of kiwifruit across different cultivars (cvs. Deliwoong and Sweetgold) and tissues at various developmental stages. Our results showed that the microbiota community similarity was confirmed between the cultivars using principal coordinates analysis. Network analysis using both degree and eigenvector centrality indicated similar network forms between the cultivars. Furthermore, Streptomycetaceae was identified in the endosphere of cv. Deliwoong by analyzing amplicon sequence variants corresponding to tissues with an eigenvector centrality value of 0.6 or higher. Our findings provide a foundation for maintaining kiwifruit health through the analysis of its microbial community.

19.
Plant Pathol J ; 39(4): 397-408, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37550985

RESUMEN

ire blight disease, caused by Erwinia amylovora, is a devastating affliction in apple cultivation worldwide. Chemical pesticides have exhibited limited effectiveness in controlling the disease, and biological control options for treating fruit trees are limited. Therefore, a relatively large-scale survey is necessary to develop microbial agents for apple trees. Here we collected healthy apple trees from across the country to identify common and core bacterial taxa. We analyzed the endophytic bacterial communities in leaves and twigs and discovered that the twig bacterial communities were more conserved than those in the leaves, regardless of the origin of the sample. This finding indicates that specific endophytic taxa are consistently present in healthy apple trees and may be involved in vital functions such as disease prevention and growth. Furthermore, we compared the community metabolite pathway expression rates of these endophyte communities with those of E. amylovora infected apple trees and discovered that the endophyte communities in healthy apple trees not only had similar community structures but also similar metabolite pathway expression rates. Additionally, Pseudomonas and Methylobacterium-Methylorobrum were the dominant taxa in all healthy apple trees. Our findings provide valuable insights into the potential roles of endophytes in healthy apple trees and inform the development of strategies for enhancing apple growth and resilience. Moreover, the similarity in cluster structure and pathway analysis between healthy orchards was mutually reinforcing, demonstrating the power of microbiome analysis as a tool for identifying factors that contribute to plant health.

20.
AIMS Microbiol ; 9(3): 554-569, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37649796

RESUMEN

Fire blight disease, caused by the bacterial pathogen Erwinia amylovora, has been a significant concern for over 50 countries worldwide. The efficacy of chemical pesticides currently available for disease control is limited. To address this issue, research is being conducted to explore environmentally friendly control methods, particularly biological control using beneficial microorganisms. However, there is limited research on the apple microbiota community and minimal research has been conducted on fungal communities that may exhibit reliable performance in apple trees. Therefore, our objective was to analyze the fungal communities present in apples at different developmental stages and in different tissues, aiming to identify potential biological control agents for fire blight disease. Our findings indicate that the fungal communities present in apple buds, flowers and leaves play an important role in inhibiting the invasion of E. amylovora. Specifically, we propose GS11 and Lipomyces starkeyi as potential keystone taxa that respond to fire blight disease. These findings provide insights into the continuity and discontinuity of fungal community structure in different developmental stages of apples and offer predictions for potential biological control agents for fire blight disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA