Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 327
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 121(3): 1144-1162, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38184812

RESUMEN

During the COVID-19 pandemic, expedient vaccine production has been slowed by the shortage of safe and effective raw materials, such as adjuvants, essential components to enhance the efficacy of vaccines. Monophosphoryl lipid A (MPLA) is a potent and safe adjuvant used in human vaccines, including the Shingles vaccine, Shingrix. 3-O-desacyl-4'-monophosphoryl lipid A (MPL), a representative MPLA adjuvant commercialized by GSK, was prepared via chemical conversion of precursors isolated from Salmonella typhimurium R595. However, the high price of these materials limits their use in premium vaccines. To combat the scarcity and high cost of safe raw materials for vaccines, we need to develop a feasible MPLA production method that is easily scaled up to meet industrial requirements. In this study, we engineered peptidoglycan and outer membrane biosynthetic pathways in Escherichia coli and developed a Escherichia coli strain, KHSC0055, that constitutively produces EcML (E. coli-produced monophosphoryl lipid A) without additives such as antibiotics or overexpression inducers. EcML production was optimized on an industrial scale via high-density fed-batch fermentation, and obtained 2.7 g of EcML (about 135,000 doses of vaccine) from a 30-L-scale fermentation. Using KHSC0055, we simplified the production process and decreased the production costs of MPLA. Then, we applied EcML purified from KHSC0055 as an adjuvant for a COVID-19 vaccine candidate (EuCorVac-19) currently in clinical trial stage III in the Philippines. By probing the efficacy and safety of EcML in humans, we established KHSC0055 as an efficient cell factory for MPLA adjuvant production.


Asunto(s)
Adyuvantes de Vacunas , Lípido A/análogos & derivados , Vacunas , Humanos , Escherichia coli/genética , Vacunas contra la COVID-19 , Pandemias , Adyuvantes Inmunológicos
2.
Ann Neurol ; 89(3): 444-458, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33219556

RESUMEN

OBJECTIVE: It is unclear if stopping treatment with dabigatran, a new oral anticoagulant (NOAC), induces a paradoxical rebound prothrombotic state. We investigated if short-term (1-3 days) dabigatran cessation is associated with a higher thrombus volume than expected from a simple reversal of the anticoagulant effect. METHODS: Ten-week-old C57Bl/6 mice (n = 338) received one of the following oral treatments: phosphate-buffered saline (PBS), dabigatran for 7 days with or without 1 to 4 day cessation, and aspirin in either a single dose or daily for 7 days. Some of the animals that ceased dabigatran for 1 to 3 days received single-dose aspirin. Thereafter, we induced FeCl3 -mediated carotid thrombosis in 130 mice, after which we performed micro computed tomography thrombus imaging. The other 208 mice underwent coagulation assays or platelet function tests. As an explorative pilot study, we reviewed the medical records of 18 consecutive patients with NOAC cessation-related cerebral infarction in a large acute stroke cohort. RESULTS: We observed a ~ 40% higher volume of carotid thrombus after dabigatran cessation at 1 to 3 days than after vehicle treatment and showed that this effect could be prevented by single-dose aspirin pretreatment. Dabigatran cessation unduly increased platelet aggregability for 2 days after drug cessation, an effect mediated through thrombin or arachidonic acid, which effect was significantly attenuated by single-dose aspirin pretreatment. In patients, short-term (≤ 3 days) cessation of NOAC therapy, compared with longer-term (≥ 5 days) cessation, tended to be associated with relatively high stroke severity. INTERPRETATION: We provide the first preclinical evidence that a rebound prothrombotic state follows short-term cessation of dabigatran therapy. ANN NEUROL 2021;89:444-458.


Asunto(s)
Antitrombinas/efectos adversos , Trombosis de las Arterias Carótidas/diagnóstico por imagen , Dabigatrán/efectos adversos , Deprescripciones , Agregación Plaquetaria/efectos de los fármacos , Síndrome de Abstinencia a Sustancias/sangre , Trombofilia/sangre , Anciano , Anciano de 80 o más Años , Animales , Antitrombinas/farmacología , Ácido Araquidónico/sangre , Aspirina/farmacología , Trombosis de las Arterias Carótidas/inducido químicamente , Trombosis de las Arterias Carótidas/prevención & control , Infarto Cerebral/diagnóstico por imagen , Infarto Cerebral/etiología , Infarto Cerebral/fisiopatología , Infarto Cerebral/prevención & control , Cloruros/toxicidad , Angiografía por Tomografía Computarizada , Dabigatrán/farmacología , Inhibidores del Factor Xa/efectos adversos , Femenino , Compuestos Férricos/toxicidad , Humanos , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/etiología , Accidente Cerebrovascular Isquémico/fisiopatología , Accidente Cerebrovascular Isquémico/prevención & control , Angiografía por Resonancia Magnética , Masculino , Volúmen Plaquetario Medio , Ratones , Noxas/toxicidad , Proyectos Piloto , Inhibidores de Agregación Plaquetaria/farmacología , Recuento de Plaquetas , Pirazoles/efectos adversos , Piridonas/efectos adversos , Rivaroxabán/efectos adversos , Índice de Severidad de la Enfermedad , Síndrome de Abstinencia a Sustancias/etiología , Síndrome de Abstinencia a Sustancias/prevención & control , Trombina/metabolismo , Trombofilia/etiología , Trombofilia/prevención & control , Microtomografía por Rayos X
3.
Bioconjug Chem ; 32(1): 199-214, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33397092

RESUMEN

Nanoparticles have been used for effectively delivering imaging agents and therapeutic drugs into stem cells. However, nanoparticles are not sufficiently internalized into stem cells; thus, new delivery method of nanoparticles into stem cells is urgently needed. Herein, we develop bicyclo[6.1.0]nonyne (BCN)-conjugated gold nanoparticles (BCN-AuNPs), which can be bioorthogonally conjugated to azide (-N3) groups on the surface of metabolically engineered stem cells via bioorthogonal click chemistry. For incorporating azide groups on the cell surface, first, human adipose-derived mesenchymal stem cells (hMSCs) were metabolically engineered with N-azidoacetylmannosamine-tetraacylated (Ac4ManNAz). Second, clickable BCN-AuNPs were bioorthogonally conjugated to azide groups on Ac4ManNAz-treated hMSCs. Importantly, a large amount of BCN-AuNPs was specifically conjugated to metabolically engineered hMSCs and then internalized rapidly into stem cells through membrane turnover mechanism, compared to the conventional nanoparticle-derived endocytosis mechanism. Furthermore, BCN-AuNPs entrapped in endosomal/lysosomal compartment could escape efficiently to the cytoplasm of metabolically engineered stem cells. Finally, BCN-AuNPs in stem cells were very safe, and they did not affect stem cell functions, such as self-renewal and differentiation capacity. These bioorthogonally conjugated nanoparticles on metabolically engineered stem cells can enhance the cellular uptake of nanoparticles via bioorthogonal conjugation mechanism.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Nanopartículas del Metal/química , Endocitosis , Oro/química , Humanos
4.
Int J Mol Sci ; 22(11)2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34067503

RESUMEN

Extracellular vesicles (EV) deliver cargoes such as nucleic acids, proteins, and lipids between cells and serve as an intercellular communicator. As it is revealed that most of the functions associated to EVs are closely related to the immune response, the important role of EVs in inflammatory diseases is emerging. EVs can be functionalized through EV surface engineering and endow targeting moiety that allows for the target specificity for therapeutic applications in inflammatory diseases. Moreover, engineered EVs are considered as promising nanoparticles to develop personalized therapeutic carriers. In this review, we highlight the role of EVs in various inflammatory diseases, the application of EV as anti-inflammatory therapeutics, and the current state of the art in EV engineering techniques.


Asunto(s)
Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Humanos , Nanopartículas/química
5.
J Am Chem Soc ; 141(8): 3699-3709, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30729777

RESUMEN

Vesicular polyion complexes (PICs) were fabricated through self-assembly of rigid cylindrical molecules, small interfering RNAs (siRNAs), with flexible block catiomers of poly(ethylene glycol) (2 kDa) and cationic polyaspartamide derivative (70 units) bearing a 5-aminopentyl side chain. 100 nm-sized siRNA-assembled vesicular PICs, termed siRNAsomes, were fabricated in specific mixing ranges between siRNA and block catiomer. The siRNAsome membrane was revealed to consist of PIC units fulfilling a simple molar ratio (1:2 or 2:3) of block catiomer and siRNA. These ratios correspond to the minimal integer molar ratio to maximally compensate the charge imbalance of PIC, because the numbers of charges per block catiomer and siRNA are +70 and -40, respectively. Accordingly, the ζ-potentials of siRNAsomes prepared at 1:2 and 2:3 were negative and positive, respectively. Cross-section transmission electron microscopic observation clarified that the membrane thicknesses of 1:2 and 2:3 siRNAsomes were 11.0 and 17.2 nm, respectively. Considering that a calculated long-axial length of siRNA is 5.9 nm, these thickness values correspond to the membrane models of two (11.8 nm) and three (17.7 nm) tandemly aligned siRNAs associating with one and two block catiomers, respectively. For biological application, siRNAsomes were stabilized through membrane-cross-linking with glutaraldehyde. The positively charged and cross-linked siRNAsome facilitated siRNA internalization into cultured cancer cells, eliciting significant gene silencing with negligible cytotoxicity. The siRNAsome stably encapsulated dextran as a model cargo macromolecule in the cavity by simple vortex mixing. Confocal laser scanning microscopic observation displayed that both of the payloads were internalized together into cultured cells. These results demonstrate the potential of siRNAsomes as a versatile platform for codelivery of siRNA with other cargo macromolecules.


Asunto(s)
Polietilenglicoles/química , Interferencia de ARN , ARN Interferente Pequeño/química , Línea Celular Tumoral , Silenciador del Gen , Humanos , Iones/síntesis química , Iones/química , Sustancias Macromoleculares/química , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie
6.
Biomacromolecules ; 19(6): 2320-2329, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29767505

RESUMEN

Antibody fragment (Fab')-installed polyion complex (PIC) micelles were constructed to improve targetability of small interfering RNA (siRNA) delivery to pancreatic cancer cells. To this end, we synthesized a block copolymer of azide-functionalized poly(ethylene glycol) and poly(l-lysine) and prepared PIC micelles with siRNA. Then, a dibenzylcyclooctyne (DBCO)-modified antihuman tissue factor (TF) Fab' was conjugated to azido groups on the micellar surface. A fluorescence correlation spectroscopic analysis revealed that 1, 2, or 3 molecule(s) of Fab'(s) were installed onto one micellar nanoparticle according to the feeding ratio of Fab' (or DBCO) to micelle (or azide). The resulting micelles exhibited ∼40 nm in hydrodynamic diameter, similar to that of the parent micelles before Fab' conjugation. Flow cytometric analysis showed that three molecules of Fab'-installed PIC micelles (3(Fab')-micelles) had the highest binding affinity to cultured pancreatic cancer BxPC3 cells, which are known to overexpress TF on their surface. The 3(Fab')-micelles also exhibited the most efficient gene silencing activity against polo-like kinase 1 mRNA in the cultured cancer cells. Furthermore, the 3(Fab')-micelles exhibited high penetrability and the highest cellular internalization amounts in BxPC3 spheroids compared with one or two molecule(s) of Fab'-installed PIC micelles. These results demonstrate the potential of anti-TF Fab'-installed PIC micelles for active targeting of stroma-rich pancreatic tumors.


Asunto(s)
Anticuerpos Antineoplásicos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Sistemas de Liberación de Medicamentos , Silenciador del Gen , Fragmentos Fab de Inmunoglobulinas , Micelas , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , ARN Interferente Pequeño , Tromboplastina/antagonistas & inhibidores , Anticuerpos Antineoplásicos/química , Anticuerpos Antineoplásicos/farmacología , Proteínas de Ciclo Celular/biosíntesis , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/farmacología , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Polietilenglicoles/química , Polietilenglicoles/farmacología , Polilisina/química , Polilisina/farmacología , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/biosíntesis , Proteínas Proto-Oncogénicas/genética , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Tromboplastina/metabolismo , Quinasa Tipo Polo 1
7.
Stroke ; 48(5): 1376-1385, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28432262

RESUMEN

BACKGROUND AND PURPOSE: Quantitative imaging for the noninvasive assessment of thrombolysis is needed to advance basic and clinical thrombosis-related research and tailor tissue-type plasminogen activator (tPA) treatment for stroke patients. We quantified the evolution of cerebral thromboemboli using fibrin-targeted glycol chitosan-coated gold nanoparticles and microcomputed tomography, with/without tPA therapy. METHODS: We injected thrombi into the distal internal carotid artery in mice (n=50). Fifty-five minutes later, we injected fibrin-targeted glycol chitosan-coated gold nanoparticles, and 5 minutes after that, we treated animals with tPA or not (25 mg/kg). We acquired serial microcomputed tomography images for 24 hours posttreatment. RESULTS: Thrombus burden at baseline was 784×103±59×103 µm2 for the tPA group (n=42) and 655×103±103×103 µm2 for the saline group (n=8; P=0.37). Thrombus shrinkage began at 0.5 to 1 hour after tPA therapy, with a maximum initial rate of change at 4603±957 µm2/min. The rate of change lowered to ≈61% level of the initial in hours 1 to 2, followed by ≈29% and ≈1% in hours 2 to 3 and 3 to 24, respectively. Thus, 85% of total thrombolysis over 24 hours (≈500 µm2, equivalent to 64% of the baseline thrombus burden) occurred within the first 3 hours of treatment. Thrombus burden at 24 hours could be predicted at around 1.5 to 2 hours. Saline treatment was not associated with significant changes in the thrombus burden. Infarct size was smaller in the tPA group versus saline group (18.1±2.3 versus 45.8±3.3 mm2; P<0.01). Infarct size correlated to final thrombus burden (r=0.71; P<0.01). Time to thrombolysis, completeness of thrombolysis, and tPA therapy were independent predictors of infarct size. CONCLUSIONS: Thromboembolic burden and the efficacy of tPA therapy can be assessed serially, noninvasively, and quantitatively using high-resolution microcomputed tomography and a fibrin-binding nanoparticle imaging agent.


Asunto(s)
Fibrinolíticos/farmacología , Embolia Intracraneal/diagnóstico por imagen , Embolia Intracraneal/tratamiento farmacológico , Trombosis Intracraneal/diagnóstico por imagen , Trombosis Intracraneal/tratamiento farmacológico , Nanopartículas del Metal , Activador de Tejido Plasminógeno/farmacología , Microtomografía por Rayos X/métodos , Animales , Modelos Animales de Enfermedad , Fibrinolíticos/administración & dosificación , Oro , Ratones , Activador de Tejido Plasminógeno/administración & dosificación
8.
Bioconjug Chem ; 28(1): 124-134, 2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-27788580

RESUMEN

Recently, nanotechnology has provided significant advances in biomedical applications including diagnosis and therapy. In particular, nanoparticles have emerged as valuable outcomes of nanotechnology due to their unique physicochemical properties based on size, shape, and surface properties. Among them, a large amount of research has reported imaging and therapeutic applications using inorganic nanoparticles with special properties. Inorganic nanoparticles developed for imaging and therapy contain metal (Au), metal oxide (Fe3O4, WO3, WO2.9), semiconductor nanocrystal (quantum dots (QDs)), and lanthanide-doped upconversion nanoparticles (UCNPs). Based on their intrinsic properties, they can generate heat, reactive oxygen species (ROS), or energy transfer, so that they can be used for both imaging and therapy. In this review, we introduce biocompatible inorganic nanoparticles for image-guided thermal and photodynamic therapy, and discuss their promising results from in vitro and in vivo studies for biomedical applications.


Asunto(s)
Compuestos Inorgánicos/química , Nanopartículas/química , Humanos , Hipertermia Inducida , Imagen por Resonancia Magnética , Puntos Cuánticos
9.
Mol Pharm ; 14(5): 1558-1570, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28191852

RESUMEN

Biological ligands such as aptamer, antibody, glucose, and peptide have been widely used to bind specific surface molecules or receptors in tumor cells or subcellular structures to improve tumor-targeting efficiency of nanoparticles. However, this active-targeting strategy has limitations for tumor targeting due to inter- and intraheterogeneity of tumors. In this study, we demonstrated an alternative active-targeting strategy using metabolic engineering and bioorthogonal click reaction to improve tumor-targeting efficiency of nanoparticles. We observed that azide-containing chemical reporters were successfully generated onto surface glycans of various tumor cells such as lung cancer (A549), brain cancer (U87), and breast cancer (BT-474, MDA-MB231, MCF-7) via metabolic engineering in vitro. In addition, we compared tumor targeting of artificial azide reporter with bicyclononyne (BCN)-conjugated glycol chitosan nanoparticles (BCN-CNPs) and integrin αvß3 with cyclic RGD-conjugated CNPs (cRGD-CNPs) in vitro and in vivo. Fluorescence intensity of azide-reporter-targeted BCN-CNPs in tumor tissues was 1.6-fold higher and with a more uniform distribution compared to that of cRGD-CNPs. Moreover, even in the isolated heterogeneous U87 cells, BCN-CNPs could bind artificial azide reporters on tumor cells more uniformly (∼92.9%) compared to cRGD-CNPs. Therefore, the artificial azide-reporter-targeting strategy can be utilized for targeting heterogeneous tumor cells via bioorthogonal click reaction and may provide an alternative method of tumor targeting for further investigation in cancer therapy.


Asunto(s)
Química Clic/métodos , Nanopartículas/química , Azidas/química , Neoplasias Encefálicas/metabolismo , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Quitosano/química , Femenino , Humanos , Neoplasias Pulmonares/metabolismo
10.
Circ J ; 81(10): 1528-1536, 2017 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-28883215

RESUMEN

BACKGROUND: The aim of this study is to identify the principal circulating factors that modulate atheromatous matrix metalloproteinase (MMP) activity in response to diet and exercise.Methods and Results:Apolipoprotein-E knock-out (ApoE-/-) mice (n=56) with pre-existing plaque, fed either a Western diet (WD) or normal diet (ND), underwent either 10 weeks of treadmill exercise or had no treatment. Atheromatous MMP activity was visualized using molecular imaging with a MMP-2/9 activatable near-infrared fluorescent (NIRF) probe. Exercise did not significantly reduce body weight, visceral fat, and plaque size in either WD-fed animals or ND-fed animals. However, atheromatous MMP-activity was different; ND animals that did or did not exercise had similarly low MMP activities, WD animals that did not exercise had high MMP activity, and WD animals that did exercise had reduced levels of MMP activity, close to the levels of ND animals. Factor analysis and path analysis showed that soluble vascular cell adhesion molecule (sVCAM)-1 was directly positively correlated to atheromatous MMP activity. Adiponectin was indirectly negatively related to atheromatous MMP activity by way of sVCAM-1. Resistin was indirectly positively related to atheromatous MMP activity by way of sVCAM-1. Visceral fat amount was indirectly positively associated with atheromatous MMP activity, by way of adiponectin reduction and resistin elevation. MMP-2/9 imaging of additional mice (n=18) supported the diet/exercise-related anti-atherosclerotic roles for sVCAM-1. CONCLUSIONS: Diet and exercise affect atheromatous MMP activity by modulating the systemic inflammatory milieu, with sVCAM-1, resistin, and adiponectin closely interacting with each other and with visceral fat.


Asunto(s)
Citocinas/farmacología , Dieta , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Condicionamiento Físico Animal , Placa Aterosclerótica/metabolismo , Adiponectina/metabolismo , Animales , Apolipoproteínas E/genética , Grasa Intraabdominal/metabolismo , Ratones , Ratones Noqueados , Resistina/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
11.
Nano Lett ; 16(10): 6257-6264, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27643533

RESUMEN

Although sonodynamic therapy (SDT) has emerged as a potential alternative to conventional photodynamic therapy, the low quantum yield of the sonosensitizer such as TiO2 nanoparticles (NPs) is still a major concern. Here, we have developed hydrophilized Au-TiO2 nanocomposites (HAu-TiO2 NCs) as sonosensitizers for improved SDT. The physicochemical properties of HAu-TiO2 NCs were thoroughly studied and compared with their counterparts without gold deposition. Upon exposure of HAu-TiO2 NCs to ultrasound, a large quantity of reactive oxygen species (ROS) were generated, leading to complete suppression of tumor growth after their systemic administration in vivo. Overall, it was evident that the composites of gold with TiO2 NPs significantly augmented the levels of ROS generation, implying their potential as SDT agents for cancer therapy.

12.
Small ; 12(9): 1201-11, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26573885

RESUMEN

Recently, targeted delivery systems based on functionalized polymeric nanoparticles have attracted a great deal of attention in cancer diagnosis and therapy. Specifically, as neuroblastoma occurs in infancy and childhood, targeted delivery may be critical to reduce the side effects that can occur with conventional approaches, as well as to achieve precise diagnosis and efficient therapy. Thus, biocompatible poly(d,l-lactide-co-glycolide) (PLG) nanoparticles containing an imaging probe and therapeutic gene are prepared, followed by modification with rabies virus glycoprotein (RVG) peptide for neuroblastoma-targeting delivery. RVG peptide is a well-known neuronal targeting ligand and is chemically conjugated to PLG nanoparticles without changing their size or shape. RVG-modified nanoparticles are effective in specifically targeting neuroblastoma both in vitro and in vivo. RVG-modified nanoparticles loaded with a fluorescent probe are useful to detect the tumor site in a neuroblastoma-bearing mouse model, and those encapsulating a therapeutic gene cocktail (siMyc, siBcl-2, and siVEGF) significantly suppressed tumor growth in the mouse model. This approach to designing and tailoring of polymeric nanoparticles for targeted delivery may be useful in the development of multimodality systems for theranostic approaches.


Asunto(s)
Terapia Genética/métodos , Nanopartículas/química , Neuroblastoma/terapia , Imagen Óptica/métodos , Polímeros/química , Nanomedicina Teranóstica/métodos , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Silenciador del Gen/efectos de los fármacos , Humanos , Ácido Láctico/química , Masculino , Ratones , Nanopartículas/ultraestructura , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , ARN Interferente Pequeño/metabolismo , Virus de la Rabia/metabolismo , Distribución Tisular/efectos de los fármacos , Resultado del Tratamiento , Carga Tumoral/efectos de los fármacos , Proteínas Virales/metabolismo
13.
Bioconjug Chem ; 27(4): 927-36, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26930274

RESUMEN

Establishment of an appropriate cell labeling and tracking method is essential for the development of cell-based therapeutic strategies. Here, we are introducing a new method for cell labeling and tracking by combining metabolic gylcoengineering and bioorthogonal copper-free Click chemistry. First, chondrocytes were treated with tetraacetylated N-azidoacetyl-D-mannosamine (Ac4ManNAz) to generate unnatural azide groups (-N3) on the surface of the cells. Subsequently, the unnatural azide groups on the cell surface were specifically conjugated with near-infrared fluorescent (NIRF) dye-tagged dibenzyl cyclooctyne (DBCO-650) through bioorthogonal copper-free Click chemistry. Importantly, DBCO-650-labeled chondrocytes presented strong NIRF signals with relatively low cytotoxicity and the amounts of azide groups and DBCO-650 could be easily controlled by feeding different amounts of Ac4ManNAz and DBCO-650 to the cell culture system. For the in vivo cell tracking, DBCO-650-labeled chondrocytes (1 × 10(6) cells) seeded on the 3D scaffold were subcutaneously implanted into mice and the transplanted DBCO-650-labeled chondrocytes could be effectively tracked in the prolonged time period of 4 weeks using NIRF imaging technology. Furthermore, this new cell labeling and tracking technology had minimal effect on cartilage formation in vivo.


Asunto(s)
Cartílago/citología , Condrocitos/citología , Química Clic , Cobre/química , Animales , Citometría de Flujo , Ratones , Ingeniería de Tejidos
14.
Amino Acids ; 48(7): 1641-54, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27098931

RESUMEN

Vascular endothelial growth factor receptor (VEGFR) and matrix metalloproteinase (MMP) are up-regulated in ischemic tissue and play pivotal roles in promoting angiogenesis. The purpose of the present study was to evaluate two fluorophore-conjugated peptide probes specific to VEGFR and MMP for dual-targeted in vivo monitoring of angiogenesis in a murine model of hindlimb ischemia. To this end, VEGFR-Probe and MMP-Probe were developed by conjugating distinct near-infrared fluorophores to VEGFR-binding and MMP substrate peptides, respectively. VEGFR-Probe exhibited specific binding to VEGFR on HUVECs, and self-quenched MMP-Probe produced strong fluorescence intensity in the presence of MMPs in vitro. Subsequently, VEGFR-Probe and MMP-Probe were successfully utilized for time course in vivo visualization of VEGFR or MMP, respectively. Simultaneous visualization provided information regarding the spatial distribution of these proteins, including areas of co-localization. This dual-targeted in vivo imaging approach will be useful for understanding the detailed mechanism of angiogenesis and for evaluating therapeutic angiogenesis.


Asunto(s)
Colorantes Fluorescentes/farmacología , Miembro Posterior/irrigación sanguínea , Isquemia/metabolismo , Imagen Óptica , Péptidos/farmacología , Animales , Femenino , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Miembro Posterior/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Isquemia/patología , Ratones , Péptidos/síntesis química , Péptidos/química
15.
Mol Pharm ; 13(11): 3700-3711, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27654060

RESUMEN

Herein, we elucidated the mechanisms and key factors for the tumor-targeting ability of nanoparticles that presented high targeting efficiency for liver tumor. We used several different nanoparticles with sizes of 200-300 nm, including liposome nanoparticles (LNPs), polystyrene nanoparticles (PNPs) and glycol chitosan-5ß-cholanic acid nanoparticles (CNPs). Their sizes are suitable for the enhanced permeation and retention (EPR) effect in literature. Different in vitro characteristics, such as the particle structure, stability, and bioinertness, were carefully analyzed with and without serum proteins. Also, pH-dependent tumor cell uptakes of nanoparticles were studied using fluorescence microscopy. Importantly, CNPs had sufficient stability and bioinertness to maintain their nanoparticle structure in the bloodstream, and they also presented prolonged circulation time in the body (blood circulation half-life T1/2 = about 12.2 h), compared to the control nanoparticles. Finally, employing liver tumor bearing mice, we also observed that CNPs had excellent liver tumor targeting ability in vivo, while LNPs and PNPs demonstrated lower tumor-targeting efficiency due to the nonspecific accumulation in normal liver tissue. Liver tumor models were produced by laparotomy and direct injection of HT29 tumor cells into the left lobe of the liver of athymic nude mice. This study provides valuable information concerning the key factors for the tumor-targeting ability of nanoparticles such as stability, bioinertness, and rapid cellular uptake at targeted tumor tissues.


Asunto(s)
Quitosano/administración & dosificación , Quitosano/metabolismo , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/metabolismo , Neoplasias Hepáticas/metabolismo , Nanopartículas/química , Animales , Microscopía por Crioelectrón , Electroforesis en Gel de Poliacrilamida , Células HT29 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Microscopía Electrónica , Células RAW 264.7 , Ratas
16.
Angew Chem Int Ed Engl ; 55(47): 14698-14703, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27762044

RESUMEN

Recently, metabolic glycoengineering with bioorthogonal click reactions has focused on improving the tumor targeting efficiency of nanoparticles as delivery vehicles for anticancer drugs or imaging agents. It is the key technique for developing tumor-specific metabolic precursors that can generate unnatural glycans on the tumor-cell surface. A cathepsin B-specific cleavable substrate (KGRR) conjugated with triacetylated N-azidoacetyl-d-mannosamine (RR-S-Ac3 ManNAz) was developed to enable tumor cells to generate unnatural glycans that contain azide groups. The generation of azide groups on the tumor cell surface was exogenously and specifically controlled by the amount of RR-S-Ac3 ManNAz that was fed to target tumor cells. Moreover, unnatural glycans on the tumor cell surface were conjugated with near infrared fluorescence (NIRF) dye-labeled molecules by a bioorthogonal click reaction in cell cultures and in tumor-bearing mice. Therefore, our RR-S-Ac3 ManNAz is promising for research in tumor-specific imaging or drug delivery.


Asunto(s)
Catepsina B/química , Nanopartículas/química , Neoplasias/diagnóstico por imagen , Imagen Óptica , Catepsina B/administración & dosificación , Catepsina B/metabolismo , Línea Celular , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Inyecciones Intravenosas , Nanopartículas/administración & dosificación , Neoplasias/patología
17.
Mol Pharm ; 12(5): 1673-9, 2015 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-25880366

RESUMEN

Silk-elastinlike protein polymer (SELP) hydrogels have been investigated for sustained local delivery of adenoviral gene carriers to solid tumors. These polymers degrade in the presence of proteases such as elastase. A detailed understanding of the interaction of SELPs with viruses and their degradation in the presence of elastase can provide useful information about mechanisms of sustained gene delivery from these systems. In this work, we investigated the interactions of SELPs with adenoviruses (Ads) and elastase using atomic force microscopy. We observed that viral particles interacted strongly with SELP networks formed by cross-linking of nanofibers. The presence of viruses contributed to enhanced network formation. Incubation of Ad with SELPs in the liquid state induced close packing of the viral colony. Morphological changes of SELP networks cleaved by enzymatic interaction with elastase were investigated. SELP-415K fiber networks were more responsive to temperature changes and were slowly degraded by elastases compared to SELP-47K, a SELP analogue with shorter elastin units in the monomer repeat. These studies provide insight into the influence of SELP structure on degradation and potential mechanisms of increased viral stability.


Asunto(s)
Adenoviridae/química , Elastasa Pancreática/química , Seda/química , Microscopía de Fuerza Atómica , Proteínas Recombinantes de Fusión/química , Virión/química
18.
Mol Ther ; 22(2): 397-408, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24145554

RESUMEN

Among various proinflammatory cytokines involved in the pathogenesis of rheumatoid arthritis (RA), tumor necrosis factor (TNF)-α plays a pivotal role in the release of other cytokines and induction of chronic inflammation. Even though siRNA has the therapeutic potential, they have a challenge to be delivered into the target cells because of their poor stability in physiological fluids. Herein, we design a nanocomplex of polymerized siRNA (poly-siRNA) targeting TNF-α with thiolated glycol chitosan (tGC) polymers for the treatment of RA. Poly-siRNA is prepared through self-polymerization of thiol groups at the 5' end of sense and antisense strand of siRNA and encapsulated into tGC polymers, resulting in poly-siRNA-tGC nanoparticles (psi-tGC-NPs) with an average diameter of 370 nm. In the macrophage culture system, psi-tGC-NPs exhibit rapid cellular uptake and excellent in vitro TNF-α gene silencing efficacy. Importantly, psi-tGC-NPs show the high accumulation at the arthritic joint sites in collagen-induced arthritis (CIA) mice. Treatment monitoring data obtained by the matrix metalloproteinase 3-specific nanoprobe and microcomputed tomography show that intravenous injection of psi-tGC-NPs significantly inhibits inflammation and bone erosion in CIA mice, comparable to methotrexate (5 mg/kg). Therefore, the availability of psi-tGC-NP therapy that target specific cytokines may herald new era in the treatment of RA.


Asunto(s)
Artritis Reumatoide/genética , Artritis Reumatoide/terapia , Quitosano , Silenciador del Gen , Nanopartículas , ARN Interferente Pequeño/genética , Compuestos de Sulfhidrilo , Factor de Necrosis Tumoral alfa/genética , Animales , Artritis Experimental , Artritis Reumatoide/patología , Línea Celular , Quitosano/química , Modelos Animales de Enfermedad , Expresión Génica , Macrófagos/metabolismo , Masculino , Ratones , Nanopartículas/química , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/química , Compuestos de Sulfhidrilo/química , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/sangre
19.
J Gene Med ; 16(5-6): 143-52, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24962819

RESUMEN

BACKGROUND: Oncolytic adenovirus (Ad)-mediated gene therapy is a promising approach for suppression of primary tumors. Therapeutic efficacy of Ad-mediated gene therapy has been limited by immunogenicity, rapid dissemination of viral progenies into systemic circulation and short duration of biological activity. Polymeric sustained local delivery can overcome many of these challenges to produce a viable therapy with improved outcomes. METHODS: Silk-elastinlike protein polymer (SELP) hydrogels were used for matrix-mediated delivery of oncolytic Ad, containing short hairpin RNA (shRNA) targeted to C-Met (sh-C-Met), to solid tumors in a nude mouse model of human head and neck cancer. The biological activity of Ad released from SELP hydrogels was examined as a function of time to investigate protective effects on viral activity. Antitumor efficacy and viral distribution were investigated for 3 weeks in tumor-bearing mice. RESULTS: The encapsulation of Ad with SELP hydrogels sustained biological activity longer than Ad alone. Ad in SELP matrix showed 1.5-fold greater antitumor efficacy compared to that of naked Ad in human xenograft tumor models. Histological analysis demonstrated that treatment with Ad in a SELP matrix resulted in apoptosis in a wider area of tumor tissue and higher density of Ad infection compared to Ad administered alone. CONCLUSIONS: Matrix-mediated delivery of Ad-containing shRNA with SELP hydrogels enhances therapeutic efficacy by tumor-selective infection, spatiotemporal control and preservation of biologic activity.


Asunto(s)
Adenovirus Humanos/genética , Vectores Genéticos/genética , Neoplasias de Cabeza y Cuello/genética , Virus Oncolíticos/genética , ARN Interferente Pequeño/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Neoplasias de Cabeza y Cuello/terapia , Humanos , Hidrogeles , Viroterapia Oncolítica , Polímeros , Proteínas Proto-Oncogénicas c-met/genética , Interferencia de ARN , Transducción Genética , Factor A de Crecimiento Endotelial Vascular/genética
20.
Ann Neurol ; 73(5): 617-25, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23495101

RESUMEN

OBJECTIVE: Advancing the understanding and management of thromboembolic stroke requires simple and robust new methods that would be useful for the in vivo assessment of thrombus burden/distribution and for characterizing its evolution in a prompt and quantitative manner. METHODS: Animals (n=127) with experimental models of thrombosis were imaged with microcomputed tomography 5 minutes (and/or ~3 weeks) after intravenous injection of glycol chitosan (GC) gold nanoparticles (AuNPs). RESULTS: Nanoparticles accumulated in the thrombus, allowing computed tomography visualization of both the presence and extent of primary and recurrent thrombi in mouse carotid arteries without a single failure of detection. Nanoparticle thrombus imaging was also effective in monitoring the therapeutic efficacy of thrombolysis (n=118 tissue plasminogen activator [tPA] therapies). Thrombus evolution (either spontaneous or post-tPA) could be mapped at high resolution in both space and time. Due to a long circulating half-life, GC-AuNPs remain available for entrapment into fibrin matrix for an extended period of time (up to 3 weeks), allowing repetition or ongoing monitoring of thrombogenesis and thrombolysis. INTERPRETATION: This is the first report on a hyperacute direct thrombus imaging technique using thrombus-seeking AuNPs and computed tomography. When translated into stroke practice, the thrombus imaging may allow us to advance to personalized thrombolytic therapy by demonstrating thrombus burden, distribution, and character in a prompt and quantitative manner. Further study into this area is indicated.


Asunto(s)
Oro/uso terapéutico , Nanopartículas , Trombosis/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Animales , Animales Recién Nacidos , Anticolesterolemiantes/uso terapéutico , Mapeo Encefálico , Quitosano/uso terapéutico , Modelos Animales de Enfermedad , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Trombosis/tratamiento farmacológico , Factores de Tiempo , Activador de Tejido Plasminógeno/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA