Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Small ; 20(12): e2308142, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37984879

RESUMEN

Hollow nanoreactors (HoNRs) have regarded as an attractive catalytic material for photocatalysis due to their exceptional capabilities in enhancing light harvesting, facilitating charge separation and transfer, and optimizing surface reactions. Developing novel HoNRs offers new options to realize controllable catalytic behavior. However, the catalytic mechanism of photocatalysis occurring in HoNRs has not yet been fully revealed. Against this backdrop, this review elaborates on three aspects: 1) the fundamental theoretical insights of HoNRs-driven photocatalytic kinetics; 2) structure-performance relationship of HoNRs to photocatalysis; 3) catalytic advantages of HoNRs in photocatalytic applications. Specifically, the review focuses on the fundamental theories of HoNRs for photocatalysis and their structural advantages for strengthening light scattering, promoting charge separation and transfer, and facilitating surface reaction kinetics, and the relationship between key structural parameters of HoNRs and their photocatalytic performance is in-depth discussed. Also, future prospects and challenges are proposed. It is anticipated that this review paper will pave the way for forthcoming investigations in the realm of HoNRs for photocatalysis.

2.
Small ; 20(26): e2310926, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38239093

RESUMEN

Activation of small molecules is considered to be a central concern in the theoretical investigation of environment- and energy-related catalytic conversions. Sub-nanostructured frustrated Lewis pairs (FLPs) have been an emerging research hotspot in recent years due to their advantages in small molecule activation. Although the progress of catalytic applications of FLPs is increasingly reported, the fundamental theories related to the structural formation, site regulation, and catalytic mechanism of FLPs have not yet been fully developed. Given this, it is attempted to demonstrate the underlying theory of FLPs formation, corresponding regulation methods, and its activation mechanism on small molecules using CeO2 as the representative metal oxide. Specifically, this paper presents three fundamental principles for constructing FLPs on CeO2 surfaces, and feasible engineering methods for the regulation of FLPs sites are presented. Furthermore, cases where typical small molecules (e.g., hydrogen, carbon dioxide, methane oxygen, etc.) are activated over FLPs are analyzed. Meanwhile, corresponding future challenges for the development of FLPs-centered theory are presented. The insights presented in this paper may contribute to the theories of FLPs, which can potentially provide inspiration for the development of broader environment- and energy-related catalysis involving small molecule activation.

3.
Small ; 19(50): e2304008, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37632316

RESUMEN

Nanoreactors, as a new class of materials with highly enriched and ordered pore channel structures, can achieve special catalytic effects by precisely identifying and controlling the molecular diffusion behavior within the ordered pore channel system. Nanoreactors-driven molecular diffusion within the ordered pore channels can be highly dependent on the local microenvironment in the nanoreactors' pore channel system. Although the diffusion process of molecules within the ordered pore channels of nanoreactors is crucial for the regulation of catalytic behaviors, it has not yet been as clearly elucidated as it deserves to be in this study. In this review, fundamental theory and measurement techniques for molecular diffusion in the pore channel system of nanoreactors are presented, structural regulation strategies of pore channel parameters for controlling molecular diffusion are discussed, and the effects of molecular diffusion in the pore channel system on catalytic reactivity and selectivity are further analyzed. This article attempts to further develop the underlying theory of molecular diffusion within the theoretical framework of nanoreactor-driven catalysis, and the proposed perspectives may contribute to the rational design of advanced catalytic materials and the precise control of complex catalytic kinetics.

4.
Environ Res ; 216(Pt 3): 114681, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36328220

RESUMEN

The first Municipal solid waste incineration (MSWI) plant in Lhasa, Tibet, the plateau region of China, started its operation in 2018. Considering the elevation and extreme climate (low pressure and low oxygen content) in Tibet, noticeable differences may be envisaged compared to MSWI elsewhere. The aim of this study is to evaluate the environmental impacts, economic benefits, and energy efficiency of this MSWI project with three representative MSWI case in plain region using Life cycle assessment (LCA), Cost-benefit analysis (CBA), and energy analysis methods. The result showed that enhancing blast volume and cross-sectional area of the boiler help adapt to the oxygen-deficient environment. GaBi model was employed based on the CML 2001 methodology to perform LCA. LCA shows that the Lhasa MSWI project has lower positive environment impacts than the projects in plain region. More attention is needed for the deficiencies in flue gas emissions of MSWI in the plateau region. CBA shows that the payback period is 11.97 years and the internal rate of return is 8.75%. The energy analysis indicates that the boiler energy efficiency is up to 81.92%. MSWI subject to minor changes seems suitable to Tibetan plateau, and can be deployed further.


Asunto(s)
Incineración , Eliminación de Residuos , Residuos Sólidos/análisis , Tibet , Oxígeno , China
5.
Angew Chem Int Ed Engl ; 62(3): e202213612, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36346146

RESUMEN

As a novel class of catalytic materials, hollow nanoreactors offer new opportunities for improving catalytic performance owing to their higher controllability on molecular kinetic behavior. Nevertheless, to achieve controllable catalysis with specific purposes, the catalytic mechanism occurring inside hollow nanoreactors remains to be further understood. In this context, this Review presents a focused discussion about the basic concept of hollow nanoreactors, the underlying theory for hollow nanoreactor-driven kinetics, and the intrinsic correlation between key structural parameters of hollow nanoreactors and molecular kinetic behaviors. We aim to provide in-depth insights into understanding kinetics occurred within typical hollow nanoreactors. The perspectives proposed in this paper may contribute to the development of the fundamental theoretical framework of hollow nanoreactor-driven catalysis.


Asunto(s)
Nanotecnología , Cinética , Catálisis
6.
Small ; 18(32): e2201361, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35760757

RESUMEN

Rationally modulating the catalytic microenvironment is important for targeted induction of specific molecular behaviors to fulfill complicated catalytic purposes. Herein, a metal pre-chelating assisted assembly strategy is developed to facilely synthesize the hollow carbon spheres with ultrafine ruthenium clusters embedded in pore channels of the carbon shell (Ru@Shell-HCSs), which can be employed as nanoreactors with preferred electronic and geometric catalytic microenvironments for the efficient tandem hydrogenation of biomass-derived furfural toward 2-methylfuran. The channel-embedding structure is proved to confer the ultrafine ruthenium clusters with an electron-deficient property via a reinforced interfacial charge transfer mechanism, which prompts the hydrogenolysis of intermediate furfuryl alcohol during the tandem reaction, thus resulting in an enhanced 2-methylfuran generation. Meanwhile, lengthening the shell pore channel can offer reactant molecules with a prolonged diffusion path, and correspondingly a longer retention time in the channel, thereafter delivering an accelerated tandem hydrogenation progression. This paper aims to present a classic case that emphasizes the critical role of precisely controlling the catalytic microenvironment of the metal-loaded hollow nanoreactors in coping with the arduous challenges from multifunctional catalyst-driven complex tandem reactions.


Asunto(s)
Furaldehído , Rutenio , Carbono/química , Furaldehído/química , Hidrogenación , Nanotecnología , Rutenio/química
7.
Environ Sci Technol ; 56(14): 9854-9871, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35635373

RESUMEN

The severe hazard of chlorinated volatile organic compounds (CVOCs) to human health and the natural environment makes their abatement technology a key topic of global environmental research. Due to the existence of Cl, the byproducts of CVOCs in the catalytic combustion process are complex and toxic, and the possible generation of dioxin becomes a potential risk to the environment. Well-qualified CVOC catalysts should process favorable low-temperature catalytic oxidation ability, excellent selectivity, and good resistance to poisoning, which are governed by the reasonable adjustment of acidity and redox properties. This review overviews the application of different types of multicomponent catalysts, that is, supported noble metal catalysts, transition metal oxide/zeolite catalysts, composite transition metal oxide catalysts, and acid-modified catalysts, for CVOC degradation from the perspective of balance between acidity and redox properties. This review also highlights the synergistic degradation of CVOCs and NOx from the perspective of acidity and redox properties. We expect this work to inspire and guide researchers from both the academic and industrial communities and help pave the way for breakthroughs in fundamental research and industrial applications in this field.


Asunto(s)
Compuestos Orgánicos Volátiles , Catálisis , Humanos , Metales , Oxidación-Reducción , Óxidos
8.
Environ Sci Technol ; 56(3): 1905-1916, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34856794

RESUMEN

The development of highly efficient and stable monolithic catalysts is essential for the removal of volatile organic compounds (VOCs). Copper foam (CF) is a potential ideal carrier for monolithic catalysts, but its low surface area is not conducive to dispersion of active species, thus reducing the interface interaction with active species. Herein, a vertically oriented Cu(OH)2 nanorod was in situ grown on the CF, which acted as the template and precursor to synthesize CoCu-MOF. The optimized catalyst (12CoCu-R) delivers excellent performance for acetone oxidation with a T90 of 195 °C. Impressively, the catalyst demonstrated satisfactory stability in long-term, cycle, water resistance, and high airspeed tests. Therefore, the present study provides a novel strategy for rationally designing efficient monolithic catalysts for VOC oxidation and other environmental applications.

9.
J Environ Manage ; 304: 114297, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34933264

RESUMEN

A magnetic nitrogen-doped sludge-based biochar (NAlSB-Fe-Si) was prepared based on waterworks sludge for raw material and dicyandiamide for nitrogen source to adsorb methylene blue (MB) from water. And the magnetic particles loaded on the adsorbent were obtained through functionalizing iron and silicon ions which were extracted from the biochar by acid and alkali impregnation. Physicochemical properties of sludge-based biochar (SB) were analyzed by SEM, BET, FTIR, XRD, XPS and VSM. Compared with the original biochar, NAlSB-Fe-Si had richer pore structure and higher pore volume, and the SiO2 and Fe3O4 loading made the specific surface area increased by 200%. Possible adsorption mechanism was proposed by exploring the initial pH, MB concentration and reaction time. Results revealed that alkaline environment was more conducive to the rapid removal of cationic dyes such as MB. Pseudo-second-order kinetic model and intra-particle diffusion model could describe the adsorption behavior of MB on NAlSB-Fe-Si. The fitting results of Langmuir model showed that adsorption temperature is positively correlated with adsorption capacity, and the maximum adsorption capacity of MB on nitrogen-doped sludge-based biochar (NSB) and NAlSB-Fe-Si at 25 °C was 26.47 and 300.36 mg/g, respectively. Finally, the MB removal rate of NAlSB-Fe-Si could still reach 70% after four cycles, indicating that the composite was an efficient cationic dye adsorbent, and its preparation could be regarded as a way of resource utilization of waterworks sludge.


Asunto(s)
Azul de Metileno , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Cinética , Aguas del Alcantarillado , Dióxido de Silicio , Contaminantes Químicos del Agua/análisis
10.
J Environ Manage ; 324: 116366, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36183534

RESUMEN

Using electro-dewatering as the pretreatment process for sludge bio-drying can improve the dewatering performance. It was innovatively investigated including the microbial mechanism and the kinetics of moisture removal by bio-drying with electro-dewatered sludge in this study. Two bio-drying processes using electro-dewatered sludge (EDS) and sludge added cornstalk conditioner (CSS) were compared. Microbial community analysis showed that the abundance of Bacteroidetes increased from 4.21% to 16.67% after electro-dewatering. The dominant phyla were Bacteroidetes (36.79%), Proteobacteria (32.35%), and Actinobacteria (24.58%) at the end of EDS bio-drying. Network analysis revealed that the co-occurrence patterns in EDS included 40 nodes and 97 edges. The prediction results of the Kyoto Encyclopedia of Genes and Genomes demonstrated that the relative abundances of carbohydrate metabolism and metabolism of terpenoids and polyketides in sludge decreased, while the relative abundances of lipid metabolism, xenobiotic biodegradation and metabolism increased after electro-dewatering. Five thin layer drying kinetic models were analyzed to estimate the bio-drying kinetic parameters. The Page's model could be better fitted to the results and the highest R2 was 0.9570 in the EDS. The new coefficients k (0.1637) and n (1.2097) were obtained. The results provided mechanism and data support for exploring and applying bio-drying technology after sludge electro-dewatering.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Desecación/métodos , Cinética , Agua
11.
Ecotoxicol Environ Saf ; 211: 111913, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33493721

RESUMEN

Effective management of municipal solid waste (MSW) is essential for the conservation of ecosystems in the Qinghai-Tibetan Plateau (QTP). Considering the landfill is the major method of MSW management, the factors influencing groundwater contamination near MSW landfill sites in the QTP were studied, based on field investigations, environmental impact assessment, and meteorological and hydrogeological analyses. Results indicated that the groundwater was contaminated heavily by nitrate (PI = 7.5), particularly in the landfill without an anti-seepage system, followed by nitrite (PI = 3.5) and heavy metals including arsenic (PI = 4.1) and hexavalent chromium (PI = 2.8). Total hardness, total dissolved solids, nitrate, and lead in the groundwater near the investigated landfill sites were significantly different between the monsoon and the cold seasons. Both the rainfall infiltration and the leachate infiltration were considerably limited by environmental characteristics in the QTP, including high evaporation, low rainfall, and the presence of permafrost. Soil sample contamination near landfill sites was considered as moderate (28.6% of the soil samples) and moderate to heavy (71.4% of the soil samples), based on the geoaccumulation index of mercury. However, comparatively low generation and concentrations of leachate and good topsoil quality (PI = 0.84) reduced the quantity of pollutants infiltrating into the groundwater. The alkaline leachate (pH = 7.45-9.23) and soil (pH = 7.08-8.72) also considerably decreased the concentrations of contaminants dissolved in the infiltrated rainfall and leachate. Additionally, low groundwater level can delay preferential flow and enhance attenuation. Therefore, the groundwater contamination near the landfill sites was simply point pollution, which was influenced by leachate, soil, climate, and hydrogeology characteristics in the QTP. The anti-seepage system is a potential strategy for use in the prevention of groundwater contamination by MSW landfills in the QTP.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea/química , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua/análisis , Ecosistema , Agua Subterránea/análisis , Metales Pesados/análisis , Nitratos/análisis , Eliminación de Residuos/métodos , Estaciones del Año , Suelo , Residuos Sólidos/análisis , Tibet , Administración de Residuos
12.
J Environ Sci (China) ; 105: 184-203, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34130835

RESUMEN

Volatile organic compounds (VOCs) with high toxicity and carcinogenicity are emitted from kinds of industries, which endanger human health and the environment. Adsorption is a promising method for the treatment of VOCs due to its low cost and high efficiency. In recent years, activated carbons, zeolites, and mesoporous materials are widely used to remove VOCs because of their high specific surface area and abundant porosity. However, the hydrophilic nature and low desorption rate of those materials limit their commercial application. Furthermore, the adsorption capacities of VOCs still need to be improved. Porous organic polymers (POPs) with extremely high porosity, structural diversity, and hydrophobic have been considered as one of the most promising candidates for VOCs adsorption. This review generalized the superiority of POPs for VOCs adsorption compared to other porous materials and summarized the studies of VOCs adsorption on different types of POPs. Moreover, the mechanism of competitive adsorption between water and VOCs on the POPs was discussed. Finally, a concise outlook for utilizing POPs for VOCs adsorption was discussed, noting areas in which further work is needed to develop the next-generation POPs for practical applications.


Asunto(s)
Compuestos Orgánicos Volátiles , Adsorción , Carbón Orgánico , Humanos , Polímeros , Porosidad
13.
Angew Chem Int Ed Engl ; 60(38): 20786-20794, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34159675

RESUMEN

As a typical class of man-made nanoreactors, metal-loaded hollow carbon nanostructures (MHC nanoreactors) exhibit competitive potentials in the heterogeneous catalysis due to their tailorable microenvironment effects, in which the void-confinement effect is one of the most fundamental functions in boosting the catalytic performance. Herein this paper, Ru-loaded hollow carbon spheres are employed as nanoreactors with a crucial biomass hydrogenation process, levulinic acid (LA) hydrogenation into γ-valerolactone, as the probe reaction to further recognize the forming mechanism of this pivotal effect. We demonstrated that the void-confinement effect of the selected MHC nanoreactors is essentially driven by an integrating action of electronic metal-support interaction, reactant enrichment and diffusion, which are mainly ascribed to peculiar properties of hollow nanoreactors both in electronic and structural aspects, respectively. This work offers a distinct case for interpreting the catalytic behaviour of MHC nanoreactors, which could potentially promise broader insights into the microenvironment engineering strategies of hollow nanostructures.

14.
Langmuir ; 36(39): 11528-11537, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32883083

RESUMEN

Mesoporous silica MCM-48 with rich silanol was prepared using polyvinylpyrrolidone (PVP) and cetyltrimethylammonium bromide (CTAB) as mixed templates, and the dynamic adsorption performance of acetone was evaluated by testing breakthrough curves. The mixed micelle formed by CTAB and PVP, as well as the hydrogen bond between the carbonyl group of PVP and silanol group affected the condensation process of Si-OH group during the formation of mesoporous structure, resulting in the increase of Si-OH group number on the surface of MCM-48. Compared with MCM-48 synthesized by single template (CTAB), the acetone adsorption capacity of MCM-48 (1:3) synthesized by mixed templates (PVP:CTAB = 1:3) improved by 23.86%, which was attributed to the increase of silanol group amount and the decrease of pore size. In addition, Bangham model had the highest goodness of fit to describe the adsorption process among four kinetic models for the adsorbents, conforming to the mechanism of pore diffusion. The Langmuir and Freundlich models were used to fit the adsorption isotherm data, and the Freundlich model could better describe the adsorption of acetone. Freundlich model fitting results showed that MCM-48 with rich silanol had a strong affinity for acetone, and the adsorption of acetone on MCM-48 belonged to multilayer adsorption. The thermodynamic results showed that the adsorption of MCM-48 for acetone was physical adsorption, and the adsorption behavior was exothermic. This work provided insight into how the inherent properties of an adsorbent and environmental factors (including initial concentration and adsorption temperature) affected the adsorption performance of ketones, thus more ideas could be provided for the accurate design of adsorbents. Furthermore, silanol-rich MCM-48 synthesized by mixed templates is expected to be a promising adsorbent for acetone removal.

15.
Sensors (Basel) ; 20(4)2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-32102439

RESUMEN

A low noise interface ASIC for micro gyroscope with ball-disc rotor is realized in 0.5µm CMOS technology. The interface circuit utilizes a transimpedance pre-amplifier which reduces input noise. The proposed interface achieves 0.003 o/s/Hz1/2 noise density and 0.003 o/s sensitivity with ±100 o/s measure range. The functionality of the full circuit, including circuit analysis, noise analysis and measurement results, has been demonstrated.

16.
Environ Sci Technol ; 53(23): 13675-13686, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31599576

RESUMEN

Nutrient dynamics in lakes are determined by the external anthropogenic discharges and unobserved internal cycling processes. In this work, a decadal nutrient data set from the eutrophic Lake Taihu, China, revealed a strong seasonal pattern of nutrient concentration and limitation. A nutrient-driven dynamic eutrophication model based on a Bayesian hierarchical framework was established to quantify the relative contributions to temporal variations from external discharges and internal processes. Results showed that after years of efforts on nutrient reduction, external discharges were relatively small and fluctuated less between seasons compared to the internal processes. A quantitative relationship between monthly nutrient concentration and corresponding internal loading was observed. Lake sediment could transform from a source of phosphorus in overlying water in summer and autumn to a sink in winter and spring. Together with temporal variations in nitrification and denitrification, seasonal transformation from the limitation of phosphorus induced colimitation of nitrogen and phosphorus. Understanding the potential impact of internal nutrient cycling on a seasonal pattern of nutrient concentration and limitation, the growth of phytoplankton, and, possibly, phytoplankton community composition should be emphasized, given the change in the relative importance of external discharges and internal loading in the process of lake restoration.


Asunto(s)
Eutrofización , Lagos , Teorema de Bayes , China , Monitoreo del Ambiente , Nitrógeno , Nutrientes , Fósforo , Estaciones del Año
18.
ChemSusChem ; 17(10): e202301687, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38221143

RESUMEN

Developing inexpensive and efficient catalysts for biomass hydrogenation or hydrodeoxygenation (HDO) is essential for efficient energy conversion. Transition metal phosphides (TMPs), with the merits of abundant active sites, unique physicochemical properties, tunable component structures, and excellent catalytic activities, are recognized as promising biomass hydrogenation or HDO catalytic materials. Nevertheless, the biomass hydrogenation or HDO catalytic applications of TMPs are still limited by various complexities and inherent performance bottlenecks, and thus their future development and utilization remain to be systematically sorted out and further explored. This review summarizes the current popular strategies for the preparation of TMPs. Subsequently, based on the structural and electronic properties of TMPs, the catalytic activity origins of TMPs in biomass hydrogenation or HDO is elucidated. Additionally, the application of TMPs in efficient biomass hydrogenation or HDO catalysis, as well as highly targeted multiscale strategies to enhance the catalytic performance of TMPs, are comprehensively described. Finally, large-scale amplification synthesis, rational construction of TMP-based catalysts and in-depth study of the catalytic mechanism are also mentioned as challenges and future directions in this research field. Expectedly, this review can provide professional and targeted guidance for the rational design and practical application of TMPs biomass hydrogenation or HDO catalysts.

19.
ChemSusChem ; 16(24): e202301091, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-37656427

RESUMEN

Nowadays, the field of biomass conversion is gradually moving towards an encouraging stage. The preparation of nitrogen-containing chemicals using various biomass resources instead of fossil resources do not only reduce carbon emissions, but also diversify the products of biomass conversion, thus increasing the economic competitiveness of biomass refining systems. Levulinic acid (LA) can be used as a promising intermediate in biomass conversion for further synthesis of pyrrolidone via reductive amination. However, there are still many critical issues to be solved. Particularly, the specific effects of catalysts on the performance of LA reductive amination have not been sufficiently revealed, and the potential impacts of key conditional factors have not been clearly elucidated. In view of this, this review attempts to provide theoretical insights through an in-depth interpretation of the above key issues. The contribution of catalysts to the reductive amination of LA as well as the catalyst structural preferences for improving catalytic performance are discussed. In addition, the role of key conditional factors is discussed. The insights presented in this review will contribute to the design of catalyst nanostructures and the rational configuration of green reaction conditions, which may provide inspiration to facilitate the nitrogen-related transformation of more biomass platform molecules.

20.
Sci Total Environ ; 881: 163336, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37030374

RESUMEN

The reduction of greenhouse gas (GHG) emissions from solid waste incinerator fly ash (IFA) management attracts growing interests since China's zero-waste plan and carbon peak/neutral goals. Herein, provincial GHG emissions from four demonstrated IFA reutilization technologies in China were estimated after analyzing IFA spatial-temporal distribution. Results indicate that technologies transition (landfilling-to-reutilization) could reduce GHG except for glassy slag production. IFA to cement option could potentially realize negative GHG emissions. Spatial GHG variation drivers in IFA management were recognized as provincial-different IFA composition and power emission factors. IFA management options were recommended provincially after weighting local development goals related to GHG reduction and economic benefits. Baseline scenario analysis shows that China's IFA industry would reach carbon peak in 2025 (5.02 Mt). 2030's GHG reduction potential (6.12 Mt) is equivalent to that of absorbed CO2 by 340 million trees annually. Overall, this research could contribute to illustrating future market layout complying with carbon peaking.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA