Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nucleic Acids Res ; 50(6): 3362-3378, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35253879

RESUMEN

Alternative splicing is a key regulatory process underlying the amplification of genomic information and the expansion of proteomic diversity, particularly in brain. Here, we identify the Ewing sarcoma protein (EWS) as a new player of alternative splicing regulation during neuronal differentiation. Knockdown of EWS in neuronal progenitor cells leads to premature differentiation. Transcriptome profiling of EWS-depleted cells revealed global changes in splicing regulation. Bioinformatic analyses and biochemical experiments demonstrated that EWS regulates alternative exons in a position-dependent fashion. Notably, several EWS-regulated splicing events are physiologically modulated during neuronal differentiation and EWS depletion in neuronal precursors anticipates the splicing-pattern of mature neurons. Among other targets, we found that EWS controls the alternative splicing of the forkhead family transcription factor FOXP1, a pivotal transcriptional regulator of neuronal differentiation, possibly contributing to the switch of gene expression underlying the neuronal differentiation program.


Asunto(s)
Proteómica , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Fusión Oncogénica/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo
2.
Int J Mol Sci ; 25(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38203763

RESUMEN

Vitamin B12 (VitB12) is a micronutrient and acts as a cofactor for fundamental biochemical reactions: the synthesis of succinyl-CoA from methylmalonyl-CoA and biotin, and the synthesis of methionine from folic acid and homocysteine. VitB12 deficiency can determine a wide range of diseases, including nervous system impairments. Although clinical evidence shows a direct role of VitB12 in neuronal homeostasis, the molecular mechanisms are yet to be characterized in depth. Earlier investigations focused on exploring the biochemical shifts resulting from a deficiency in the function of VitB12 as a coenzyme, while more recent studies propose a broader mechanism, encompassing changes at the molecular/cellular levels. Here, we explore existing study models employed to investigate the role of VitB12 in the nervous system, including the challenges inherent in replicating deficiency/supplementation in experimental settings. Moreover, we discuss the potential biochemical alterations and ensuing mechanisms that might be modified at the molecular/cellular level (such as epigenetic modifications or changes in lysosomal activity). We also address the role of VitB12 deficiency in initiating processes that contribute to nervous system deterioration, including ROS accumulation, inflammation, and demyelination. Consequently, a complex biological landscape emerges, requiring further investigative efforts to grasp the intricacies involved and identify potential therapeutic targets.


Asunto(s)
Depresores del Sistema Nervioso Central , Deficiencia de Vitamina B 12 , Humanos , Vitamina B 12 , Modelos Biológicos , Biotina , Sistema Nervioso
3.
Cerebellum ; 22(1): 102-119, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35040097

RESUMEN

Selective neuronal vulnerability is common to most degenerative disorders, including Niemann-Pick C (NPC), a rare genetic disease with altered intracellular trafficking of cholesterol. Purkinje cell dysfunction and loss are responsible for cerebellar ataxia, which is among the prevailing neurological signs of the NPC disease. In this review, we focus on some questions that are still unresolved. First, we frame the cerebellar vulnerability in the context of the extended postnatal time length by which the development of this structure is completed in mammals. In line with this thought, the much later development of cerebellar symptoms in humans is due to the later development and/or maturation of the cerebellum. Hence, the occurrence of developmental events under a protracted condition of defective intracellular cholesterol mobilization hits the functional maturation of the various cell types generating the ground of increased vulnerability. This is particularly consistent with the high cholesterol demand required for cell proliferation, migration, differentiation, and synapse formation/remodeling. Other major questions we address are why the progression of Purkinje cells loss is always from the anterior to the posterior lobes and why cerebellar defects persist in the mouse model even when genetic manipulations can lead to nearly normal survival.


Asunto(s)
Enfermedad de Niemann-Pick Tipo C , Masculino , Ratones , Animales , Humanos , Enfermedad de Niemann-Pick Tipo C/genética , Cerebelo/metabolismo , Células de Purkinje/metabolismo , Neuronas/metabolismo , Colesterol/metabolismo , Mamíferos
4.
J Cell Physiol ; 237(12): 4563-4579, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36322609

RESUMEN

The loss of NPC1 or NPC2 function results in cholesterol and sphingolipid dyshomeostasis that impairs developmental trajectories, predisposing the postnatal brain to the appearance of pathological signs, including progressive and stereotyped Purkinje cell loss and microgliosis. Despite increasing evidence reporting the activation of pro-inflammatory microglia as a cardinal event of NPC1 disease progression at symptomatic stages both in patients and preclinical models, how microglia cells respond to altered neurodevelopmental dynamics remains not completely understood. To gain an insight on this issue, we have characterized patterns of microglia activation in the early postnatal cerebellum and young adult olfactory bulb of the hypomorphic Npc1nmf164 mouse model. Previous evidence has shown that both these areas display a number of anomalies affecting neuron and glial cell proliferation and differentiation, which largely anticipate cellular changes and clinical signs, raising our interest on how microglia interplay to these changes. Even so, to separate the contribution of cues provided by the dysfunctional microenvironment we have also studied microglia isolated from mice of increasing ages and cultured in vitro for 1 week. Our findings show that microglia of both cerebellum and olfactory bulb of Npc1nmf164 mice adopt an activated phenotype, characterized by increased cell proliferation, enlarged soma size and de-ramified processes, as well as a robust phagocytic activity, in a time- and space-specific manner. Enhanced phagocytosis associates with a profound remodeling of gene expression signatures towards gene products involved in chemotaxis, cell recognition and engulfment, including Cd68 and Trem2. These early changes in microglia morphology and activities are induced by region-specific developmental anomalies that likely anticipate alterations in neuronal connectivity. As a proof of concept, we show that microglia activation within the granule cell layer and glomerular layer of the olfactory bulb of Npc1nmf164 mice is associated with shortfalls in fine odor discrimination.


Asunto(s)
Microglía , Enfermedad de Niemann-Pick Tipo C , Percepción Olfatoria , Animales , Ratones , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglía/metabolismo , Proteína Niemann-Pick C1/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Odorantes , Receptores Inmunológicos/metabolismo , Fagocitos/metabolismo
5.
Neurobiol Dis ; 163: 105606, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34974125

RESUMEN

Brain-derived neurotrophic factor (BDNF) is one of the most studied neurotrophins in the mammalian brain, essential not only to the development of the central nervous system but also to synaptic plasticity. BDNF is present in various brain areas, but highest levels of expression are seen in the cerebellum and hippocampus. After birth, BDNF acts in the cerebellum as a mitogenic and chemotactic factor, stimulating the cerebellar granule cell precursors to proliferate, migrate and maturate, while in the hippocampus BDNF plays a fundamental role in synaptic transmission and plasticity, representing a key regulator for the long-term potentiation, learning and memory. Furthermore, the expression of BDNF is highly regulated and changes of its expression are associated with both physiological and pathological conditions. The purpose of this review is to provide an overview of the current state of knowledge on the BDNF biology and its neurotrophic role in the proper development and functioning of neurons and synapses in two important brain areas of postnatal neurogenesis, the cerebellum and hippocampus. Dysregulation of BDNF expression and signaling, resulting in alterations in neuronal maturation and plasticity in both systems, is a common hallmark of several neurodevelopmental diseases, such as autism spectrum disorder, suggesting that neuronal malfunction present in these disorders is the result of excessive or reduced of BDNF support. We believe that the more the relevance of the pathophysiological actions of BDNF, and its downstream signals, in early postnatal development will be highlighted, the more likely it is that new neuroprotective therapeutic strategies will be identified in the treatment of various neurodevelopmental disorders.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cerebelo/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Animales , Humanos , Neurogénesis/fisiología , Sinapsis/metabolismo
6.
J Neurochem ; 157(4): 1153-1166, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32959393

RESUMEN

Neural Progenitor Cells (NPCs) are multipotent cells that are able to self-renew and differentiate into neurons. The size of the initial pool of NPCs during the brain development strongly affects the number of neurons that compose cortical multi-layer during development. Gonadal hormones can influence the balance between self-renewal and differentiation processes. Herein, we investigated the role of dihydrotestosterone (DHT), the active metabolite of testosterone, in the regulation of NPC stemness and differentiation. First, we evaluated the expression of the androgen receptor (AR), the transcription factor activated by DHT that mediates the physiological effects of androgens, in NPCs. Western blot analysis showed that DHT-mediated activation of AR induces mitogenic signaling pathways (PI3K/AKT and MAPK/ERK) in NPCs, whereas luciferase activity assays demonstrated the induction of AR transcriptional activity. AR activation mediated by DHT treatment strongly increased the proliferation of NPCs and reduced their propensity to differentiate into neurons. Furthermore, the effects of AR activation were mediated, at least in part, by increased expression of Aldehyde Dehydrogenase 1 Family Member A3 enzyme (ALDH1A3). Pharmacological inhibition of ALDH activity with N,N-diethylaminobenzaldehyde (DEAB) reduced the effect of DHT on NPC proliferation in vitro. Furthermore, inhibition of AR activity by Enzalutamide reduced the NPC pool in the developing cortex of male C57/BL6 mouse embryos. These findings indicate that androgens engage an AR-dependent signaling pathway that impact on neurogenesis by increasing the NPC pool in the developing mouse cortex.


Asunto(s)
Corteza Cerebral/embriología , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Receptores Androgénicos/metabolismo , Transducción de Señal/fisiología , Andrógenos/farmacología , Animales , Dihidrotestosterona/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/citología
7.
Neurogenetics ; 21(4): 279-287, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32638185

RESUMEN

Friedreich's ataxia (FRDA) is usually due to a homozygous GAA expansion in intron 1 of the frataxin (FXN) gene. Rarely, uncommon molecular rearrangements at the FXN locus can cause pitfalls in the molecular diagnosis of FRDA. Here we describe a family whose proband was affected by late-onset Friedreich's ataxia (LOFA); long-range PCR (LR-PCR) documented two small expanded GAA alleles both in the proband and in her unaffected younger sister, who therefore received a diagnosis of pre-symptomatic LOFA. Later studies, however, revealed that the proband's unaffected sister, as well as their healthy mother, were both carriers of an expanded GAA allele and an uncommon (GAAGGA)66-67 repeat mimicking a GAA expansion at the LR-PCR that was the cause of the wrong initial diagnosis of pre-symptomatic LOFA. Extensive studies in tissues from all the family members, including LR-PCR, assessment of methylation status of FXN locus, MboII restriction analysis and direct sequencing of LR-PCR products, analysis of FXN mRNA, and frataxin protein expression, support the virtual lack of pathogenicity of the rare (GAAGGA)66-67 repeat, also providing significant data about the modulation of epigenetic modifications at the FXN locus. Overall, this report highlights a rare but possible pitfall in FRDA molecular diagnosis, emphasizing the need of further analysis in case of discrepancy between clinical and molecular data.


Asunto(s)
Metilación de ADN , Ataxia de Friedreich/genética , Heterocigoto , Proteínas de Unión a Hierro/genética , Repeticiones de Trinucleótidos , Adulto , Alelos , Epigénesis Genética , Salud de la Familia , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Ataxia de Friedreich/complicaciones , Humanos , Leucocitos/citología , Masculino , Repeticiones de Microsatélite , Linaje , Fenotipo , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Frataxina
8.
Int J Mol Sci ; 21(3)2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-32019240

RESUMEN

Friedreich's ataxia (FA) is a trinucleotide repeats expansion neurodegenerative disorder, for which no cure or approved therapies are present. In most cases, GAA trinucleotide repetitions in the first intron of the FXN gene are the genetic trigger of FA, determining a strong reduction of frataxin, a mitochondrial protein involved in iron homeostasis. Frataxin depletion impairs iron-sulfur cluster biosynthesis and determines iron accumulation in the mitochondria. Mounting evidence suggests that these defects increase oxidative stress susceptibility and reactive oxygen species production in FA, where the pathologic picture is worsened by a defective regulation of the expression and signaling pathway modulation of the transcription factor NF-E2 p45-related factor 2 (NRF2), one of the fundamental mediators of the cellular antioxidant response. NRF2 protein downregulation and impairment of its nuclear translocation can compromise the adequate cellular response to the frataxin depletion-dependent redox imbalance. As NRF2 stability, expression, and activation can be modulated by diverse natural and synthetic compounds, efforts have been made in recent years to understand if regulating NRF2 signaling might ameliorate the pathologic defects in FA. Here we provide an analysis of the pharmaceutical interventions aimed at restoring the NRF2 signaling network in FA, elucidating specific biomarkers useful for monitoring therapeutic effectiveness, and developing new therapeutic tools.


Asunto(s)
Biomarcadores/análisis , Biomarcadores/metabolismo , Ataxia de Friedreich/diagnóstico , Ataxia de Friedreich/terapia , Factor 2 Relacionado con NF-E2/metabolismo , Ataxia de Friedreich/metabolismo , Humanos , Transducción de Señal
9.
Int J Mol Sci ; 21(19)2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33036493

RESUMEN

Mitochondrial dysfunction is a key element in the pathogenesis of neurodegenerative disorders, such as riboflavin transporter deficiency (RTD). This is a rare, childhood-onset disease characterized by motoneuron degeneration and caused by mutations in SLC52A2 and SLC52A3, encoding riboflavin (RF) transporters (RFVT2 and RFVT3, respectively), resulting in muscle weakness, ponto-bulbar paralysis and sensorineural deafness. Based on previous findings, which document the contribution of oxidative stress in RTD pathogenesis, we tested possible beneficial effects of several antioxidants (Vitamin C, Idebenone, Coenzyme Q10 and EPI-743, either alone or in combination with RF) on the morphology and function of neurons derived from induced pluripotent stem cells (iPSCs) from two RTD patients. To identify possible improvement of the neuronal morphotype, neurite length was measured by confocal microscopy after ß-III tubulin immunofluorescent staining. Neuronal function was evaluated by determining superoxide anion generation by MitoSOX assay and intracellular calcium (Ca2+) levels, using the Fluo-4 probe. Among the antioxidants tested, EPI-743 restored the redox status, improved neurite length and ameliorated intracellular calcium influx into RTD motoneurons. In conclusion, we suggest that antioxidant supplementation may have a role in RTD treatment.


Asunto(s)
Antioxidantes/farmacología , Proteínas de Transporte de Membrana/deficiencia , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Riboflavina/metabolismo , Animales , Biomarcadores , Parálisis Bulbar Progresiva , Calcio/metabolismo , Diferenciación Celular , Modelos Animales de Enfermedad , Pérdida Auditiva Sensorineural , Humanos , Células Madre Pluripotentes Inducidas/citología , Metabolismo de los Lípidos , Ratones , Ratones Noqueados , Neuronas Motoras/citología , Oxidación-Reducción , Fenotipo
10.
Hum Mol Genet ; 26(14): 2732-2746, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28453628

RESUMEN

Brain development involves proliferation, migration and specification of neural progenitor cells, culminating in neuronal circuit formation. Mounting evidence indicates that improper regulation of RNA binding proteins (RBPs), including members of the FET (FUS, EWS, TAF15) family, results in defective cortical development and/or neurodegenerative disorders. However, in spite of their physiological relevance, the precise pattern of FET protein expression in developing neurons is largely unknown. Herein, we found that FUS, EWS and TAF15 expression is differentially regulated during brain development, both in time and in space. In particular, our study identifies a fine-tuned regulation of FUS and EWS during neuronal differentiation, whereas TAF15 appears to be more constitutively expressed. Mechanistically FUS and EWS protein expression is regulated at the post-transcriptional level during neuron differentiation and brain development. Moreover, we identified miR-141 as a key regulator of these FET proteins that modulate their expression levels in differentiating neuronal cells. Thus, our studies uncover a novel link between post-transcriptional regulation of FET proteins expression and neurogenesis.


Asunto(s)
MicroARNs/metabolismo , Neuronas/fisiología , Procesamiento Postranscripcional del ARN , Proteína EWS de Unión a ARN/biosíntesis , Proteína FUS de Unión a ARN/biosíntesis , Animales , Encéfalo/citología , Encéfalo/embriología , Encéfalo/metabolismo , Diferenciación Celular/fisiología , Humanos , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Neurogénesis/fisiología , Neuronas/citología , Neuronas/metabolismo , Procesamiento Proteico-Postraduccional , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores Asociados con la Proteína de Unión a TATA/biosíntesis , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo
11.
Int J Mol Sci ; 20(20)2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31640150

RESUMEN

NRF2 (Nuclear factor Erythroid 2-related Factor 2) signaling is impaired in Friedreich's Ataxia (FRDA), an autosomal recessive disease characterized by progressive nervous system damage and degeneration of nerve fibers in the spinal cord and peripheral nerves. The loss of frataxin in patients results in iron sulfur cluster deficiency and iron accumulation in the mitochondria, making FRDA a fatal and debilitating condition. There are no currently approved therapies for the treatment of FRDA and molecules able to activate NRF2 have the potential to induce clinical benefits in patients. In this study, we compared the efficacy of six redox-active drugs, some already adopted in clinical trials, targeting NRF2 activation and frataxin expression in fibroblasts obtained from skin biopsies of FRDA patients. All of these drugs consistently increased NRF2 expression, but differential profiles of NRF2 downstream genes were activated. The Sulforaphane and N-acetylcysteine were particularly effective on genes involved in preventing inflammation and maintaining glutathione homeostasis, the dimethyl fumarate, omaxevolone, and EPI-743 in counteracting toxic products accumulation, the idebenone in mitochondrial protection. This study may contribute to develop synergic therapies, based on a combination of treatment molecules.


Asunto(s)
Acetilcisteína/farmacología , Ataxia de Friedreich/patología , Proteínas de Unión a Hierro/metabolismo , Isotiocianatos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Biopsia , Regulación hacia Abajo/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Ataxia de Friedreich/tratamiento farmacológico , Ataxia de Friedreich/metabolismo , Humanos , Terapia Molecular Dirigida , Oxidación-Reducción , Transducción de Señal/efectos de los fármacos , Sulfóxidos , Factores de Tiempo , Activación Transcripcional/efectos de los fármacos , Frataxina
12.
Hum Genet ; 136(9): 1215-1235, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28434044

RESUMEN

Alternative splicing is a powerful mechanism that largely expands the coding potential of eukaryotic genomes. Indeed, its complex and flexible regulation is exploited by cells to adapt to various environmental conditions, through production of protein variants displaying different functions. Such flexibility, however, is accompanied by high risk of errors, and dysregulation of splicing is now recognized as an important factor in human diseases. Notably, the RNA-based nature of splicing, which involves high specificity through base pair recognition, offers a remarkable therapeutic opportunity by allowing design of tools with elevated target selectivity. Herein, we illustrate examples of how defective splicing, obtained by mutations affecting multiple layers of regulation, can result in pathology. In particular, we focus on splicing-related defects occurring in brain and muscle diseases and describe therapeutic approaches currently available for these pathologies.


Asunto(s)
Encefalopatías , Enfermedades Musculares , Empalme del ARN , Animales , Encefalopatías/genética , Encefalopatías/metabolismo , Humanos , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo
13.
J Cell Sci ; 126(Pt 12): 2577-82, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23591816

RESUMEN

Ubiquitin (Ub)-binding domains (UBDs) located in Ub receptors decode the ubiquitination signal by non-covalently engaging the Ub modification on their binding partners and transduce the Ub signalling through Ub-based molecular interactions. In this way, inducible protein ubiquitination regulates diverse biological processes. The estrogen receptor alpha (ERα) is a ligand-activated transcription factor that mediates the pleiotropic effects of the sex hormone 17ß-estradiol (E2). Fine regulation of E2 pleiotropic actions depends on E2-dependent ERα association with a plethora of binding partners and/or on the E2 modulation of receptor ubiquitination. Indeed, E2-induced ERα polyubiquitination triggers receptor degradation and transcriptional activity, and E2-dependent reduction in ERα monoubiquitination is crucial for E2 signalling. Monoubiquitinated proteins often contain UBDs, but whether non-covalent Ub-ERα binding could occur and play a role in E2-ERα signalling is unknown. Here, we report an Ub-binding surface within the ERα ligand binding domain that directs in vitro the receptor interaction with both ubiquitinated proteins and recombinant Ub chains. Mutational analysis reveals that ERα residues leucine 429 and alanine 430 are involved in Ub binding. Moreover, impairment of ERα association to ubiquitinated species strongly affects E2-induced ERα transcriptional activity. Considering the importance of UBDs in the Ub-based signalling network and the central role of different ERα binding partners in the modulation of E2-dependent effects, our discoveries provide novel insights into ERα activity that could also be relevant for ERα-dependent diseases.


Asunto(s)
Estradiol/farmacología , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Activación Transcripcional/efectos de los fármacos , Ubiquitina/genética , Ubiquitina/metabolismo , Línea Celular , Línea Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Unión Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Ubiquitinación/efectos de los fármacos
14.
Biomedicines ; 11(5)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37238963

RESUMEN

Friedreich's ataxia (FRDA) is an autosomal, recessive, inherited neurodegenerative disease caused by the loss of activity of the mitochondrial protein frataxin (FXN), which primarily affects dorsal root ganglia, cerebellum, and spinal cord neurons. The genetic defect consists of the trinucleotide GAA expansion in the first intron of FXN gene, which impedes its transcription. The resulting FXN deficiency perturbs iron homeostasis and metabolism, determining mitochondrial dysfunctions and leading to reduced ATP production, increased reactive oxygen species (ROS) formation, and lipid peroxidation. These alterations are exacerbated by the defective functionality of the nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor acting as a key mediator of the cellular redox signalling and antioxidant response. Because oxidative stress represents a major pathophysiological contributor to FRDA onset and progression, a great effort has been dedicated to the attempt to restore the NRF2 signalling axis. Despite this, the beneficial effects of antioxidant therapies in clinical trials only partly reflect the promising results obtained in preclinical studies conducted in cell cultures and animal models. For these reasons, in this critical review, we overview the outcomes obtained with the administration of various antioxidant compounds and critically analyse the aspects that may have contributed to the conflicting results of preclinical and clinical studies.

15.
Mech Ageing Dev ; 211: 111802, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36958540

RESUMEN

Reactive oxygen species (ROS) is a term that defines a group of unstable compounds derived from exogenous sources or endogenous metabolism. Under physiological conditions, low levels of ROS play a key role in the regulation of signal transduction- or transcription-mediated cellular responses. In contrast, excessive and uncontrolled loading of ROS results in a pathological state known as oxidative stress (OS), a leading contributor to aging and a pivotal factor for the onset and progression of many disorders. Evolution has endowed cells with an antioxidant system involved in stabilizing ROS levels to a specific threshold, maintaining ROS-induced signalling function and limiting negative side effects. In mammals, a great deal of evidence indicates that females defence against ROS is more proficient than males, determining a longer lifespan and lower incidence of most chronic diseases. In this review, we will summarize the most recent sex-related differences in the regulation of redox homeostasis. We will highlight the peculiar aspects of the antioxidant defence in sex-biased diseases whose onset or progression is driven by OS, and we will discuss the molecular, genetic, and evolutionary determinants of female proficiency to cope with ROS.


Asunto(s)
Antioxidantes , Caracteres Sexuales , Animales , Femenino , Masculino , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Homeostasis , Mamíferos
16.
Mol Neurobiol ; 60(9): 5395-5410, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37314654

RESUMEN

Niemann-Pick type C1 (NPC1) disease is a lysosomal lipid storage disorder due to mutations in the NPC1 gene resulting in the accumulation of cholesterol within the endosomal/lysosomal compartments. The prominent feature of the disorder is the progressive Purkinje cell degeneration leading to ataxia.In a mouse model of NPC1 disease, we have previously demonstrated that impaired Sonic hedgehog signaling causes defective proliferation of granule cells (GCs) and abnormal cerebellar morphogenesis. Studies conducted on cortical and hippocampal neurons indicate a functional interaction between Sonic hedgehog and brain-derived neurotrophic factor (BDNF) expression, leading us to hypothesize that BDNF signaling may be altered in Npc1 mutant mice, contributing to the onset of cerebellar alterations present in NPC1 disease before the appearance of signs of ataxia.We characterized the expression/localization patterns of the BDNF and its receptor, tropomyosin-related kinase B (TrkB), in the early postnatal and young adult cerebellum of the Npc1nmf164 mutant mouse strain.In Npc1nmf164 mice, our results show (i) a reduced expression of cerebellar BDNF and pTrkB in the first 2 weeks postpartum, phases in which most GCs complete the proliferative/migrative program and begin differentiation; (ii) an altered subcellular localization of the pTrkB receptor in GCs, both in vivo and in vitro; (iii) reduced chemotactic response to BDNF in GCs cultured in vitro, associated with impaired internalization of the activated TrkB receptor; (iv) an overall increase in dendritic branching in mature GCs, resulting in impaired differentiation of the cerebellar glomeruli, the major synaptic complex between GCs and mossy fibers.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Ataxia Cerebelosa , Femenino , Ratones , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas Hedgehog/metabolismo , Neuronas/metabolismo , Cerebelo/metabolismo , Células de Purkinje/metabolismo , Diferenciación Celular , Ataxia Cerebelosa/metabolismo , Colesterol/metabolismo
17.
Biomedicines ; 11(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36979729

RESUMEN

BET proteins function as histone code readers of acetylated lysins that determine the positive regulation in transcription of genes involved in cell cycle progression, differentiation, inflammation, and many other pathways. In recent years, thanks to the development of BET inhibitors, interest in this protein family has risen for its relevance in brain development and function. For example, experimental evidence has shown that BET modulation affects neuronal activity and the expression of genes involved in learning and memory. In addition, BET inhibition strongly suppresses molecular pathways related to neuroinflammation. These observations suggest that BET modulation may play a critical role in the onset and during the development of diverse neurodegenerative and neuropsychiatric disorders, such as Alzheimer's disease, fragile X syndrome, and Rett syndrome. In this review article, we summarize the most recent evidence regarding the involvement of BET proteins in brain physiology and pathology, as well as their pharmacological potential as targets for therapeutic purposes.

18.
Mech Ageing Dev ; 212: 111807, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37023929

RESUMEN

Aging is a physiological and progressive phenomenon in all organisms' life cycle, characterized by the accumulation of degenerative processes triggered by several alterations within molecular pathways. These changes compromise cell fate, resulting in the loss of functions in tissues throughout the body, including the brain. Physiological brain aging has been linked to structural and functional alterations, as well as to an increased risk of neurodegenerative diseases. Post-transcriptional RNA modifications modulate mRNA coding properties, stability, translatability, expanding the coding capacity of the genome, and are involved in all cellular processes. Among mRNA post-transcriptional modifications, the A-to-I RNA editing, m6A RNA Methylation and Alternative Splicing play a critical role in all the phases of a neuronal cell life cycle and alterations in their mechanisms of action significantly contribute to aging and neurodegeneration. Here we review our current understanding of the contribution of A-to-I RNA editing, m6A RNA Methylation, and Alternative Splicing to physiological brain aging process and neurodegenerative diseases.


Asunto(s)
Empalme Alternativo , Enfermedades Neurodegenerativas , Humanos , Metilación , Edición de ARN , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , ARN/genética , ARN Mensajero/metabolismo , Encéfalo/metabolismo , Envejecimiento/genética
19.
J Cell Biochem ; 113(6): 2057-63, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22274883

RESUMEN

Skeletal muscle has the ability to regenerate new muscle fibers after injury. The process of new muscle formation requires that quiescent mononuclear muscle precursor cells (myoblasts) become activated, proliferate, differentiate, and fuse into multinucleated myotubes which, in turn, undergo further differentiation and mature to form functional muscle fibers. Previous data demonstrated the crucial role played by 3-hydroxy 3-methylglutaryl coenzyme A reductase (HMGR), the rate-limiting enzyme of cholesterol biosynthetic pathway, in fetal rat myoblast (L6) differentiation. This finding, along with epidemiological studies assessing the myotoxic effect of statins, HMGR inhibitors, allowed us to speculate that HMGR could be strongly involved in skeletal muscle repair. Thus, our research was aimed at evaluating such involvement: in vitro and in vivo experiments were performed on both mouse adult satellite cell derived myoblasts (SCDM) and mouse muscles injured with cardiotoxin. Results demonstrate that HMGR inhibition by the statin Simvastatin reduces SCDM fusion index, fast MHC protein levels by 60% and slow MHC by 40%. Most importantly, HMGR inhibition delays skeletal muscle regeneration in vivo. Thus, besides complaining of myopathies, patients given Simvastatin could also undergo an impairment in muscle repair.


Asunto(s)
Hidroximetilglutaril-CoA Reductasas/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Músculo Esquelético/fisiología , Mioblastos/fisiología , Regeneración/efectos de los fármacos , Simvastatina/farmacología , Animales , Cardiotoxinas/farmacología , Diferenciación Celular/efectos de los fármacos , Femenino , Ácido Mevalónico/farmacología , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/lesiones , Regeneración/fisiología
20.
Front Psychiatry ; 13: 851679, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280167

RESUMEN

Prenatal exposure to valproic acid (VPA) is a risk factor for autism spectrum disorder (ASD) in humans and it induces autistic-like behaviors in rodents. Imbalances between GABAergic and glutamatergic neurotransmission and increased oxidative stress together with altered glutathione (GSH) metabolism have been hypothesized to play a role in both VPA-induced embriotoxicity and in human ASD. N-acetylcysteine (NAC) is an antioxidant precursor of glutathione and a modulator of glutamatergic neurotransmission that has been tested in ASD, although the clinical studies currently available provided controversial results. Here, we explored the effects of repeated NAC (150 mg/kg) administration on core autistic-like features and altered brain GSH metabolism in the VPA (500 mg/kg) rat model of ASD. Furthermore, we measured the mRNA expression of genes encoding for scaffolding and transcription regulation proteins, as well as the subunits of NMDA and AMPA receptors and metabotropic glutamate receptors mGLUR1 and mGLUR5 in brain areas that are relevant to ASD. NAC administration ameliorated the social deficit displayed by VPA-exposed rats in the three-chamber test, but not their stereotypic behavior in the hole board test. Furthermore, NAC normalized the altered GSH levels displayed by these animals in the hippocampus and nucleus accumbens, and it partially rescued the altered expression of post-synaptic terminal network genes found in VPA-exposed rats, such as NR2a, MGLUR5, GLUR1, and GLUR2 in nucleus accumbens, and CAMK2, NR1, and GLUR2 in cerebellum. These data indicate that NAC treatment selectively mitigates the social dysfunction displayed by VPA-exposed rats normalizing GSH imbalance and reestablishing the expression of genes related to synaptic function in a brain region-specific manner. Taken together, these data contribute to clarify the behavioral impact of NAC in ASD and the molecular mechanisms that underlie its effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA