Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(6): 3640-3645, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38294831

RESUMEN

We report the discovery of a novel form of Ruddlesden-Popper (RP) nickelate that stands as the first example of long-range, coherent polymorphism in this class of inorganic solids. Rather than the well-known, uniform stacking of perovskite blocks ubiquitously found in RP phases, this newly discovered polymorph of the bilayer RP phase La3Ni2O7 adopts a novel stacking sequence in which single-layer and trilayer blocks of NiO6 octahedra alternate in a "1313" sequence. Crystals of this new polymorph are described in space group Cmmm, although we note evidence for a competing Imam variant. Transport measurements at ambient pressure reveal metallic character with evidence of a charge density wave transition with an onset at T ≈ 134 K. The discovery of such polymorphism could reverberate to the expansive range of science and applications that rely on RP materials, particularly the recently reported signatures of superconductivity in bilayer La3Ni2O7 with Tc as high as 80 K above 14 GPa.

2.
Nat Mater ; 21(2): 160-164, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34811494

RESUMEN

Since the discovery of high-temperature superconductivity in copper oxide materials1, there have been sustained efforts to both understand the origins of this phase and discover new cuprate-like superconducting materials2. One prime materials platform has been the rare-earth nickelates and, indeed, superconductivity was recently discovered in the doped compound Nd0.8Sr0.2NiO2 (ref. 3). Undoped NdNiO2 belongs to a series of layered square-planar nickelates with chemical formula Ndn+1NinO2n+2 and is known as the 'infinite-layer' (n = ∞) nickelate. Here we report the synthesis of the quintuple-layer (n = 5) member of this series, Nd6Ni5O12, in which optimal cuprate-like electron filling (d8.8) is achieved without chemical doping. We observe a superconducting transition beginning at ~13 K. Electronic structure calculations, in tandem with magnetoresistive and spectroscopic measurements, suggest that Nd6Ni5O12 interpolates between cuprate-like and infinite-layer nickelate-like behaviour. In engineering a distinct superconducting nickelate, we identify the square-planar nickelates as a new family of superconductors that can be tuned via both doping and dimensionality.


Asunto(s)
Electrones , Superconductividad , Calor
3.
Nano Lett ; 21(15): 6633-6639, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34339218

RESUMEN

We present a comprehensive theory of the magnetic phases in twisted bilayer chromium trihalides through a combination of first-principles calculations and atomistic simulations. We show that the stacking-dependent interlayer exchange leads to an effective moiré field that is mostly ferromagnetic with antiferromagnetic patches. A wide range of noncollinear magnetic phases can be stabilized as a function of the twist angle and Dzyaloshinskii-Moriya interaction as a result of the competing interlayer antiferromagnetic coupling and the energy cost for forming domain walls. In particular, we demonstrate that for small twist angles various skyrmion crystal phases can be stabilized in both CrI3 and CrBr3. Our results provide an interpretation for the recent observation of noncollinear magnetic phases in twisted bilayer CrI3 and demonstrate the possibility of engineering further nontrivial magnetic ground states in twisted bilayer chromium trihalides.

4.
Nat Commun ; 14(1): 1468, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36928184

RESUMEN

The layered square-planar nickelates, Ndn+1NinO2n+2, are an appealing system to tune the electronic properties of square-planar nickelates via dimensionality; indeed, superconductivity was recently observed in Nd6Ni5O12 thin films. Here, we investigate the role of epitaxial strain in the competing requirements for the synthesis of the n = 3 Ruddlesden-Popper compound, Nd4Ni3O10, and subsequent reduction to the square-planar phase, Nd4Ni3O8. We synthesize our highest quality Nd4Ni3O10 films under compressive strain on LaAlO3 (001), while Nd4Ni3O10 on NdGaO3 (110) exhibits tensile strain-induced rock salt faults but retains bulk-like transport properties. A high density of extended defects forms in Nd4Ni3O10 on SrTiO3 (001). Films reduced on LaAlO3 become insulating and form compressive strain-induced c-axis canting defects, while Nd4Ni3O8 films on NdGaO3 are metallic. This work provides a pathway to the synthesis of Ndn+1NinO2n+2 thin films and sets limits on the ability to strain engineer these compounds via epitaxy.

5.
Sci Rep ; 12(1): 17864, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36284152

RESUMEN

We provide a set of computational experiments based on ab initio calculations to elucidate whether a cuprate-like antiferromagnetic insulating state can be present in the phase diagram of the low-valence layered nickelate family (R[Formula: see text]Ni[Formula: see text]O[Formula: see text], R= rare-earth, [Formula: see text]) in proximity to half-filling. It is well established that at [Formula: see text] filling the infinite-layer ([Formula: see text]) nickelate is metallic, in contrast to cuprates wherein an antiferromagnetic insulator is expected. We show that for the Ruddlesden-Popper (RP) reduced phases of the series (finite n) an antiferromagnetic insulating ground state can naturally be obtained instead at [Formula: see text] filling, due to the spacer RO[Formula: see text] fluorite slabs present in their structure that block the c-axis dispersion. In the [Formula: see text] nickelate, the same type of solution can be derived if the off-plane R-Ni coupling is suppressed. We show how this can be achieved if a structural element that cuts off the c-axis dispersion is introduced (i.e. vacuum in a monolayer of RNiO[Formula: see text], or a blocking layer in multilayers formed by (RNiO[Formula: see text])[Formula: see text]/(RNaO[Formula: see text])[Formula: see text]).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA