Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Epidemiol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918040

RESUMEN

Prenatal exposures to ambient particulate matter (PM2.5) from traffic may generate oxidative stress, and thus contribute to adverse birth outcomes. We investigated whether PM2.5 constituents from brake and tire wear affect levels of oxidative stress biomarkers (malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG)) using urine samples collected up to three times during pregnancy in 156 women recruited from antenatal clinics at the University of California Los Angeles. Land use regression models with co-kriging were employed to estimate average residential outdoor concentrations of black carbon (BC), PM2.5 mass, PM2.5 metal components, and three PM2.5 oxidative potential metrics during the 4-weeks prior to urine sample collection. 8-OHdG concentrations in mid-pregnancy increased by 24.8% (95% CI: 9.0, 42.8) and 14.3% (95% CI: 0.4%, 30.0%) per interquartile range (IQR) increase in PM2.5 mass and BC, respectively. The brake wear marker (barium) and the oxidative potential metrics were associated with increased MDA concentration in the 1st sample collected (10-17 gestational week), but 95% CIs included the null. Traffic-related air pollution contributed in early to mid-pregnancy to oxidative stress generation previously linked to adverse birth outcomes.

2.
Environ Sci Technol ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38923518

RESUMEN

Ozone and its oxidation products result in negative health effects when inhaled. Despite painted surfaces being the most abundant surface in indoor spaces, surface loss remains one of the largest uncertainties in the indoor ozone budget. Here, ozone uptake coefficients (γO3) on painted surfaces were measured in a flow-through reactor where 79% of the inner surfaces were removable painted glass sheets. Flat white paint initially had a high uptake coefficient (8.3 × 10-6) at 20% RH which plateaued to 1.1 × 10-6 as the paint aged in an indoor office over weeks. Increasing the RH from 0 to 75% increased γO3 by a factor of 3.0, and exposure to 134 ppb of α-terpineol for 1 h increased γO3 by a factor of 1.6 at 20% RH. RH also increases α-terpineol partitioning to paint, further increasing ozone loss, but the type of paint (flat, eggshell, satin, semigloss) had no significant effect. A kinetic multilayer model captures the dependence of γO3 on RH and the presence of α-terpineol, indicating the reacto-diffusive depth for O3 is 1 to 2 µm. Given the similarity of the kinetics on aged surfaces across many paint types and the sustained reactivity during aging, these results suggest a mechanism for catalytic loss.

3.
J Phys Chem A ; 127(24): 5209-5221, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37285129

RESUMEN

The photochemical aging of biomass-burning organic aerosols (BBOAs) by exposure to sunlight changes the chemical composition over its atmospheric lifetime, affecting the toxicological and climate-relevant properties of BBOA particles. This study used electron paramagnetic resonance (EPR) spectroscopy with a spin-trapping agent, 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide (BMPO), high-resolution mass spectrometry, and kinetic modeling to study the photosensitized formation of reactive oxygen species (ROS) and free radicals in mixtures of benzoquinone and levoglucosan, known BBOA tracer molecules. EPR analysis of irradiated benzoquinone solutions showed dominant formation of hydroxyl radicals (•OH), which are known products of reaction of triplet-state benzoquinone with water, also yielding semiquinone radicals. In addition, hydrogen radicals (H•) were also observed, which were not detected in previous studies. They were most likely generated by photochemical decomposition of semiquinone radicals. The irradiation of mixtures of benzoquinone and levoglucosan led to substantial formation of carbon- and oxygen-centered organic radicals, which became prominent in mixtures with a higher fraction of levoglucosan. High-resolution mass spectrometry permitted direct observation of BMPO-radical adducts and demonstrated the formation of •OH, semiquinone radicals, and organic radicals derived from oxidation of benzoquinone and levoglucosan. Mass spectrometry also detected superoxide radical adducts (BMPO-OOH) that did not appear in the EPR spectra. Kinetic modeling of the processes in the irradiated mixtures successfully reproduced the time evolution of the observed formation of the BMPO adducts of •OH and H• observed with EPR. The model was then applied to describe photochemical processes that would occur in mixtures of benzoquinone and levoglucosan in the absence of BMPO, predicting the generation of HO2• due to the reaction of H• with dissolved oxygen. These results imply that photoirradiation of aerosols containing photosensitizers induces ROS formation and secondary radical chemistry to drive photochemical aging of BBOA in the atmosphere.

4.
Proc Natl Acad Sci U S A ; 117(21): 11321-11327, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32393627

RESUMEN

The neonicotinoid nitenpyram (NPM) is a multifunctional nitroenamine [(R1N)(R2N)C=CHNO2] pesticide. As a nitroalkene, it is structurally similar to other emerging contaminants such as the pharmaceuticals ranitidine and nizatidine. Because ozone is a common atmospheric oxidant, such compounds may be oxidized on contact with air to form new products that have different toxicity compared to the parent compounds. Here we show that oxidation of thin solid films of NPM by gas-phase ozone produces unexpected products, the majority of which do not contain oxygen, despite the highly oxidizing reactant. A further surprising finding is the formation of gas-phase nitrous acid (HONO), a species known to be a major photolytic source of the highly reactive hydroxyl radical in air. The results of application of a kinetic multilayer model show that reaction was not restricted to the surface layers but, at sufficiently high ozone concentrations, occurred throughout the film. The rate constant derived for the O3-NPM reaction is 1 × 10-18 cm3⋅s-1, and the diffusion coefficient of ozone in the thin film is 9 × 10-10 cm2⋅s-1 These findings highlight the unique chemistry of multifunctional nitroenamines and demonstrate that known chemical mechanisms for individual moieties in such compounds cannot be extrapolated from simple alkenes. This is critical for guiding assessments of the environmental fates and impacts of pesticides and pharmaceuticals, and for providing guidance in designing better future alternatives.

5.
Environ Sci Technol ; 56(12): 7716-7728, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35671499

RESUMEN

Commonly found in atmospheric aerosols, cooking oils, and human sebum, unsaturated lipids rapidly decay upon exposure to ozone, following the Criegee mechanism. Here, the gas-surface ozonolysis of three oleic acid-based compounds was studied in a reactor and indoors. Under dry conditions, quantitative product analyses by 1H NMR indicate up to 79% molar yield of stable secondary ozonides (SOZs) in oxidized triolein and methyl oleate coatings. Elevated relative humidity (RH) significantly suppresses the SOZ yields, enhancing the formation of condensed-phase aldehydes and volatile C9 products. Along with kinetic parameters informed by molecular dynamics simulations, these results were used as constraints in a kinetic multilayer model (KM-GAP) simulating triolein ozonolysis. Covering a wide range of coating thicknesses and ozone levels, the model predicts a much faster decay near the gas-lipid interface compared to the bulk. Although the dependence of RH on SOZ yields is well predicted, the model overestimates the production of H2O2 and aldehydes. With negligible dependence on RH, the product composition for oxidized oleic acid is substantially affected by a competitive reaction between Criegee intermediates (CIs) and carboxylic acids. The resulting α-acyloxyalkyl hydroperoxides (α-AAHPs) have much higher molar yields (29-38%) than SOZs (12-16%). Overall, the ozone-lipid chemistry could affect the indoor environment through "crust" accumulation on surfaces and volatile organic compound (VOC) emission. In the atmosphere, the peroxide formation and changes in particle hygroscopicity may have effects on climate. The related health impacts are also discussed.


Asunto(s)
Ácido Oléico , Ozono , Aldehídos , Humanos , Peróxido de Hidrógeno , Ácido Oléico/química , Ozono/química , Trioleína
6.
Environ Sci Technol ; 56(23): 17029-17038, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36394988

RESUMEN

Oxidative stress mediated by reactive oxygen species (ROS) is a key process for adverse aerosol health effects. Secondary organic aerosols (SOA) account for a major fraction of fine particulate matter, and their inhalation and deposition into the respiratory tract causes the formation of ROS by chemical and cellular processes, but their relative contributions are hardly quantified and their link to oxidative stress remains uncertain. Here, we quantified cellular and chemical superoxide generation by 9,10-phenanthrenequinone (PQN) and isoprene SOA using a chemiluminescence assay combined with electron paramagnetic resonance spectroscopy as well as kinetic modeling. We also applied cellular imaging techniques to study the cellular mechanism of superoxide release and oxidative damage on cell membranes. We show that PQN and isoprene SOA activate NADPH oxidase in macrophages to release massive amounts of superoxide, overwhelming the superoxide formation by aqueous chemical reactions in the epithelial lining fluid. The activation dose for PQN is 2 orders of magnitude lower than that of isoprene SOA, suggesting that quinones are more toxic. While higher exposures trigger cellular antioxidant response elements, the released ROS induce oxidative damage to the cell membrane through lipid peroxidation. Such mechanistic and quantitative understandings provide a basis for further elucidation of adverse health effects and oxidative stress by fine particulate matter.


Asunto(s)
Contaminantes Atmosféricos , Superóxidos , Especies Reactivas de Oxígeno/metabolismo , Quinonas , NADPH Oxidasas/metabolismo , NADPH Oxidasas/farmacología , Contaminantes Atmosféricos/análisis , Aerosoles , Material Particulado/toxicidad , Material Particulado/análisis , Estrés Oxidativo , Macrófagos
7.
Environ Sci Technol ; 56(11): 7256-7265, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34965092

RESUMEN

There is growing interest to move beyond fine particle mass concentrations (PM2.5) when evaluating the population health impacts of outdoor air pollution. However, few exposure models are currently available to support such analyses. In this study, we conducted large-scale monitoring campaigns across Montreal and Toronto, Canada during summer 2018 and winter 2019 and developed models to predict spatial variations in (1) the ability of PM2.5 to generate reactive oxygen species in the lung fluid (ROS), (2) PM2.5 oxidative potential based on the depletion of ascorbate (OPAA) and glutathione (OPGSH) in a cell-free assay, and (3) anhysteretic magnetic remanence (XARM) as an indicator of magnetite nanoparticles. We also examined how exposure to PM oxidative capacity metrics (ROS/OP) varied by socioeconomic status within each city. In Montreal, areas with higher material deprivation, indicating lower area-level average household income and employment, were exposed to PM2.5 characterized by higher ROS and OP. This relationship was not observed in Toronto. The developed models will be used in epidemiologic studies to assess the health effects of exposure to PM2.5 and iron-rich magnetic nanoparticles in Toronto and Montreal.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Nanopartículas de Magnetita , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , Estrés Oxidativo , Material Particulado/análisis , Especies Reactivas de Oxígeno
8.
J Phys Chem A ; 126(32): 5398-5406, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35925795

RESUMEN

Emerging contaminants are of concern due to their rapidly increasing numbers and potential ecological and human health effects. In this study, the synergistic effects of the presence of multifunctional nitro, amino and carbon-carbon double bond (C═C) groups on the gas phase ozonolysis in O2 or at the air/solid interface were investigated using five simple model compounds. The gas phase ozonolysis rate constants at 296 K were (3.5 ± 0.9) × 10-20 cm3 molecule-1 s-1 for 2-methyl-1-nitroprop-1-ene and (6.8 ± 0.8) × 10-19 cm3 molecule-1 s-1 for 4-methyl-4-nitro-1-pentene, with lifetimes of 134 and 7 days in the presence of 100 ppb ozone in the atmosphere, respectively. The rate constants for gas phase E-N,N-dimethyl-1-propenylamine and N,N-dimethylallylamine reactions with ozone were too fast (>10-18 cm3 molecule-1 s-1) to be measured, implying lifetimes of less than 5 days. A multiphase kinetics model (KM-GAP) was used to probe the gas-solid kinetics of 1-dimethylamino-2-nitroethylene, yielding a rate constant for the surface reaction of 1.8 × 10-9 cm2 molecule-1 s-1 and in the bulk 1× 10-16 cm3 molecule-1 s-1. These results show that a nitro group attached to the C═C lowers the gas phase rate constant by 2-3 orders of magnitude compared to the simple alkenes, while amino groups have the opposite effect. The presence of both groups provides counterbalancing effects. Products with deleterious health effects including dimethylformamide and formaldehyde were identified by FTIR. The identified products differentiate whether the initial site of ozone attack is C═C and/or the amino group. This study provides a basis for predicting the environmental fates of emerging contaminants and shows that both the toxicity of both the parent compounds and the products should be taken into account in assessing their environmental impacts.


Asunto(s)
Alquenos , Ozono , Alquenos/química , Carbono , Humanos , Cinética , Nitrógeno , Ozono/química
9.
Environ Health ; 21(1): 90, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36184638

RESUMEN

BACKGROUND: Excess reactive oxygen species (ROS) can cause oxidative stress damaging cells and tissues, leading to adverse health effects in the respiratory tract. Yet, few human epidemiological studies have quantified the adverse effect of early life exposure to ROS on child health. Thus, this study aimed to examine the association of levels of ROS exposure at birth and the subsequent risk of developing common respiratory and allergic diseases in children. METHODS: 1,284 Toronto Child Health Evaluation Questionnaire (T-CHEQ) participants were followed from birth (born between 1996 and 2000) until outcome, March 31, 2016 or loss-to-follow-up. Using ROS data from air monitoring campaigns and land use data in Toronto, ROS concentrations generated in the human respiratory tract in response to inhaled pollutants were estimated using a kinetic multi-layer model. These ROS values were assigned to participants' postal codes at birth. Cox proportional hazards regression models, adjusted for confounders, were then used to estimate hazard ratios (HR) with 95% confidence intervals (CI) per unit increase in interquartile range (IQR). RESULTS: After adjusting for confounders, iron (Fe) and copper (Cu) were not significantly associated with the risk of asthma, allergic rhinitis, nor eczema. However, ROS, a measure of the combined impacts of Fe and Cu in PM2.5, was associated with an increased risk of asthma (HR = 1.11, 95% CI: 1.02-1.21, p < 0.02) per IQR. There were no statistically significant associations of ROS with allergic rhinitis (HR = 0.96, 95% CI: 0.88-1.04, p = 0.35) and eczema (HR = 1.03, 95% CI: 0.98-1.09, p = 0.24). CONCLUSION: These findings showed that ROS exposure in early life significantly increased the childhood risk of asthma, but not allergic rhinitis and eczema.


Asunto(s)
Contaminantes Atmosféricos , Asma , Eccema , Contaminantes Ambientales , Rinitis Alérgica , Rinitis , Contaminantes Atmosféricos/análisis , Asma/inducido químicamente , Asma/epidemiología , Niño , Estudios de Cohortes , Cobre , Eccema/inducido químicamente , Eccema/epidemiología , Humanos , Recién Nacido , Hierro , Estudios Longitudinales , Material Particulado , Especies Reactivas de Oxígeno , Sistema Respiratorio , Rinitis/inducido químicamente , Rinitis Alérgica/inducido químicamente
10.
Am J Respir Crit Care Med ; 204(2): 168-177, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33798018

RESUMEN

Rationale: Evidence linking outdoor air pollution with coronavirus disease (COVID-19) incidence and mortality is largely based on ecological comparisons between regions that may differ in factors such as access to testing and control measures that may not be independent of air pollution concentrations. Moreover, studies have yet to focus on key mechanisms of air pollution toxicity such as oxidative stress. Objectives: To conduct a within-city analysis of spatial variations in COVID-19 incidence and the estimated generation of reactive oxygen species (ROS) in lung lining fluid attributable to fine particulate matter (particulate matter with an aerodynamic diameter ⩽2.5 µm [PM2.5]). Methods: Sporadic and outbreak-related COVID-19 case counts, testing data, population data, and sociodemographic data for 140 neighborhoods were obtained from the City of Toronto. ROS estimates were based on a mathematical model of ROS generation in lung lining fluid in response to iron and copper in PM2.5. Spatial variations in long-term average ROS were predicted using a land-use regression model derived from measurements of iron and copper in PM2.5. Data were analyzed using negative binomial regression models adjusting for covariates identified using a directed acyclic graph and accounting for spatial autocorrelation. Measurements and Main Results: A significant positive association was observed between neighborhood-level ROS and COVID-19 incidence (incidence rate ratio = 1.07; 95% confidence interval, 1.01-1.15 per interquartile range ROS). Effect modification by neighborhood-level measures of racialized group membership and socioeconomic status was also identified. Conclusions: Examination of neighborhood characteristics associated with COVID-19 incidence can identify inequalities and generate hypotheses for future studies.


Asunto(s)
Contaminación del Aire/análisis , COVID-19/metabolismo , Modelos Estadísticos , Especies Reactivas de Oxígeno/análisis , COVID-19/epidemiología , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Ontario/epidemiología , SARS-CoV-2
11.
Proc Natl Acad Sci U S A ; 116(24): 11658-11663, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31142653

RESUMEN

Benzo[a]pyrene (BaP), a key polycyclic aromatic hydrocarbon (PAH) often associated with soot particles coated by organic compounds, is a known carcinogen and mutagen. When mixed with organics, the kinetics and mechanisms of chemical transformations of BaP by ozone in indoor and outdoor environments are still not fully elucidated. Using direct analysis in real-time mass spectrometry (DART-MS), kinetics studies of the ozonolysis of BaP in thin films exhibited fast initial loss of BaP followed by a slower decay at long exposure times. Kinetic multilayer modeling demonstrates that the slow decay of BaP over long times can be simulated if there is slow diffusion of BaP from the film interior to the surface, resolving long-standing unresolved observations of incomplete PAH decay upon prolonged ozone exposure. Phase separation drives the slow diffusion time scales in multicomponent systems. Specifically, thermodynamic modeling predicts that BaP phase separates from secondary organic aerosol material so that the BaP-rich layer at the surface shields the inner BaP from ozone. Also, BaP is miscible with organic oils such as squalane, linoleic acid, and cooking oil, but its oxidation products are virtually immiscible, resulting in the formation of a viscous surface crust that hinders diffusion of BaP from the film interior to the surface. These findings imply that phase separation and slow diffusion significantly prolong the chemical lifetime of PAHs, affecting long-range transport of PAHs in the atmosphere and their fates in indoor environments.

12.
Environ Sci Technol ; 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34596401

RESUMEN

Respiratory deposition of secondary organic aerosols (SOA) and iron may lead to the generation of reactive oxygen species and free radicals in lung fluid to cause oxidative stress, but their underlying mechanism and formation kinetics are not well understood. Here we demonstrate substantial formation of organic radicals in surrogate lung fluid (SLF) by mixtures of Fe2+ and SOA generated from photooxidation of isoprene, α-terpineol, and toluene. The molar yields of organic radicals by SOA are measured to be 0.03-0.5% in SLF, which are 5-10 times higher than in water. We observe that Fe2+ enhances organic radical yields dramatically by a factor of 20-80, which can be attributed to Fe2+-facilitated decomposition of organic peroxides, in consistency with a positive correlation between peroxide contents and organic radical yields. Ascorbate mediates redox cycling of iron ions to sustain organic peroxide decomposition, as supported by kinetic modeling reproducing time- and concentration-dependence of organic radical formation as well as additional experiments observing the formation of Fe2+ and ascorbate radicals in mixtures of ascorbate and Fe3+. •OH and superoxide are found to be scavenged by antioxidants efficiently. These findings have implications on the role of organic radicals in oxidative damage and lipid peroxidation.

13.
Environ Sci Technol ; 55(1): 260-270, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33352036

RESUMEN

Reactive oxygen species (ROS) play a central role in aqueous-phase processing and health effects of atmospheric aerosols. Although hydroxyl radical (•OH) and hydrogen peroxide (H2O2) are regarded as major oxidants associated with secondary organic aerosols (SOA), the kinetics and reaction mechanisms of superoxide (O2•-) formation are rarely quantified and poorly understood. Here, we demonstrate a dominant formation of O2•- with molar yields of 0.01-0.03% from aqueous reactions of biogenic SOA generated by •OH photooxidation of isoprene, ß-pinene, α-terpineol, and d-limonene. The temporal evolution of •OH and O2•- formation is elucidated by kinetic modeling with a cascade of aqueous reactions including the decomposition of organic hydroperoxides, •OH oxidation of primary or secondary alcohols, and unimolecular decomposition of α-hydroxyperoxyl radicals. Relative yields of various types of ROS reflect a relative abundance of organic hydroperoxides and alcohols contained in SOA. These findings and mechanistic understanding have important implications on the atmospheric fate of SOA and particle-phase reactions of highly oxygenated organic molecules as well as oxidative stress upon respiratory deposition.


Asunto(s)
Contaminantes Atmosféricos , Superóxidos , Aerosoles , Peróxido de Hidrógeno , Radical Hidroxilo
14.
Environ Sci Technol ; 55(20): 14069-14079, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34609853

RESUMEN

Air pollution is a major risk factor for human health. Chemical reactions in the epithelial lining fluid (ELF) of the human respiratory tract result in the formation of reactive oxygen species (ROS), which can lead to oxidative stress and adverse health effects. We use kinetic modeling to quantify the effects of fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) on ROS formation, interconversion, and reactivity, and discuss different chemical metrics for oxidative stress, such as cumulative production of ROS and hydrogen peroxide (H2O2) to hydroxyl radical (OH) conversion. All three air pollutants produce ROS that accumulate in the ELF as H2O2, which serves as reservoir for radical species. At low PM2.5 concentrations (<10 µg m-3), we find that less than 4% of all produced H2O2 is converted into highly reactive OH, while the rest is intercepted by antioxidants and enzymes that serve as ROS buffering agents. At elevated PM2.5 concentrations (>10 µg m-3), however, Fenton chemistry overwhelms the ROS buffering effect and leads to a tipping point in H2O2 fate, causing a strong nonlinear increase in OH production. This shift in ROS chemistry and the enhanced OH production provide a tentative mechanistic explanation for how the inhalation of PM2.5 induces oxidative stress and adverse health effects.


Asunto(s)
Contaminantes Atmosféricos , Humanos , Peróxido de Hidrógeno , Radical Hidroxilo , Material Particulado , Especies Reactivas de Oxígeno
15.
Environ Sci Technol ; 55(6): 3807-3818, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33666410

RESUMEN

Metal components in fine particulate matter (PM2.5) from nontailpipe emissions may play an important role in underlying the adverse respiratory effects of PM2.5. We investigated the associations between long-term exposure to iron (Fe) and copper (Cu) in PM2.5 and their combined impact on reactive oxygen species (ROS) generation in human lungs, and the incidence of asthma, chronic obstructive pulmonary disease (COPD), COPD mortality, pneumonia mortality, and respiratory mortality. We conducted a population-based cohort study of ∼0.8 million adults in Toronto, Canada. Land-use regression models were used to estimate the concentrations of Fe, Cu, and ROS. Outcomes were ascertained using validated health administrative databases. We found positive associations between long-term exposure to Fe, Cu, and ROS and the risks of all five respiratory outcomes. The associations were more robust for COPD, pneumonia mortality, and respiratory mortality than for asthma incidence and COPD mortality. Stronger associations were observed for ROS than for either Fe or Cu. In two-pollutant models, adjustment for nitrogen dioxide somewhat attenuated the associations while adjustment for PM2.5 had little influence. Long-term exposure to Fe and Cu in PM2.5 and estimated ROS concentration in lung fluid was associated with increased incidence of respiratory diseases, suggesting the adverse respiratory effects of nontailpipe emissions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedades Respiratorias , Adulto , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Canadá , Estudios de Cohortes , Cobre/toxicidad , Exposición a Riesgos Ambientales/análisis , Humanos , Hierro , Pulmón , Material Particulado/efectos adversos , Material Particulado/análisis , Especies Reactivas de Oxígeno
16.
Indoor Air ; 31(6): 2070-2083, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33991124

RESUMEN

Large surface area-to-volume ratios indoors cause heterogeneous interactions to be especially important. Semi-volatile organic compounds can deposit on impermeable indoor surfaces forming thin organic films. We developed a new model to simulate the initial film formation by treating gas-phase diffusion and turbulence through a surface boundary layer and multi-layer reversible adsorption on rough surfaces, as well as subsequent film growth by resolving bulk diffusion and chemical reactions in a film. The model was applied with consistent parameters to reproduce twenty-one sets of film formation measurements due to multi-layer adsorption of multiple phthalates onto different indoor-relevant surfaces, showing that the films should initially be patchy with the formation of pyramid-like structures on the surface. Sensitivity tests showed that highly turbulent conditions can lead to the film growing by more than a factor of two compared to low turbulence conditions. If surface films adopt an ultra-viscous state with bulk diffusion coefficients of less than 10-18  cm2 s-1 , a significant decrease in film growth is expected. The presence of chemical reactions in the film has the potential to increase the rate of film growth by nearly a factor of two.


Asunto(s)
Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Adsorción , Difusión , Cinética , Compuestos Orgánicos Volátiles/análisis
17.
Environ Sci Technol ; 54(24): 15680-15688, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33232600

RESUMEN

Nitrous acid (HONO) is an important gaseous pollutant contributing to indoor air pollution because it causes adverse health effects and is the main source of hydroxyl radicals (OH). Here, we present direct measurements of HONO produced through light-induced heterogeneous reactions of NO2 with grime adsorbed on glass window. The uptake coefficients of NO2 [γ(NO2)] on the glass plates from the kitchen increased markedly from (2.3 ± 0.1) × 10-6 at 0% RH to (4.1 ± 0.5) × 10-6 at 90% RH. We report a significant quantity of daytime HONO produced in the kitchen, compared to the living room and bedroom. Kinetic modeling suggests that phase state and bulk diffusivity play important roles in the NO2 uptake; the best fit to the measured uptake coefficients is obtained with fixed diffusion coefficients. Photon scattering may be occurring at the surface of the films, leading to enhanced photon-excitation rates of polycyclic aromatic hydrocarbons. By taking these effects into account, the results from this study indicate that the HONO yields obtained in this study can explain the missing HONO in the photochemical models describing the indoor air chemistry.


Asunto(s)
Contaminación del Aire Interior , Dióxido de Nitrógeno , Contaminación del Aire Interior/análisis , Gases , Radical Hidroxilo , Dióxido de Nitrógeno/análisis , Ácido Nitroso/análisis
18.
Environ Sci Technol ; 54(3): 1730-1739, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31940195

RESUMEN

We report elevated levels of gaseous inorganic chlorinated and nitrogenated compounds in indoor air while cleaning with a commercial bleach solution during the House Observations of Microbial and Environmental Chemistry field campaign in summer 2018. Hypochlorous acid (HOCl), chlorine (Cl2), and nitryl chloride (ClNO2) reached part-per-billion by volume levels indoors during bleach cleaning-several orders of magnitude higher than typically measured in the outdoor atmosphere. Kinetic modeling revealed that multiphase chemistry plays a central role in controlling indoor chlorine and reactive nitrogen chemistry during these periods. Cl2 production occurred via heterogeneous reactions of HOCl on indoor surfaces. ClNO2 and chloramine (NH2Cl, NHCl2, NCl3) production occurred in the applied bleach via aqueous reactions involving nitrite (NO2-) and ammonia (NH3), respectively. Aqueous-phase and surface chemistry resulted in elevated levels of gas-phase nitrogen dioxide (NO2). We predict hydroxyl (OH) and chlorine (Cl) radical production during these periods (106 and 107 molecules cm-3 s-1, respectively) driven by HOCl and Cl2 photolysis. Ventilation and photolysis accounted for <50% and <0.1% total loss of bleach-related compounds from indoor air, respectively; we conclude that uptake to indoor surfaces is an important additional loss process. Indoor HOCl and nitrogen trichloride (NCl3) mixing ratios during bleach cleaning reported herein are likely detrimental to human health.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Cloro , Gases , Humanos , Ácido Hipocloroso , Ventilación
19.
J Phys Chem A ; 124(25): 5230-5236, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32479080

RESUMEN

Isoprene hydroxy hydroperoxides (ISOPOOH) formed by the photooxidation of isoprene under low-NO conditions play an important role in the formation and evolution of secondary organic aerosols, yet multiphase processes of ISOPOOH are poorly understood. By applying electron paramagnetic resonance spectroscopy, we observe that ISOPOOH undergoes aqueous-phase decomposition upon interacting with Fe(II) ions to form OH and organic radicals at room temperature. To reproduce the measured dependence of OH formation on the Fe concentrations by kinetic modeling, we postulate that Fe(II) ions react with ISOPOOH via Fenton-like reactions to form OH radicals with a rate constant of 7.3 × 10-18 cm3 s-1. At low concentrations, oxalate forms monocomplexes with Fe(II) ions, which can promote OH formation by ISOPOOH. However, at high concentrations, oxalate scavenges OH radicals, thereby lowering aqueous OH concentrations. These findings provide new insight for the atmospheric fate of ISOPOOH and reactive oxygen species generation in the aqueous phase.

20.
J Phys Chem A ; 124(47): 9844-9853, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33196200

RESUMEN

The reaction of ozone with iodide in the ocean is a major ozone dry deposition pathway, as well as an important source of reactive iodine to the marine troposphere. Few prior laboratory experiments have been conducted with environmentally relevant ozone mixing ratios and iodide concentrations, leading to uncertainties in the rate of the reaction under marine boundary layer conditions. As well, there remains disagreement in the literature assessment of the relative contributions of an interfacial reaction via ozone adsorbed to the ocean surface versus a bulk reaction with dissolved ozone. In this study, we measure the uptake coefficient of ozone over a buffered, pH 8 salt solution replicating the concentrations of iodide, bromide, and chloride in the ocean over an ozone mixing ratio of 60-500 ppb. Due to iodide depletion in the solution, the measured ozone uptake coefficient is dependent on the exposure time of the solution to ozone and its mixing ratio. A kinetic multilayer model confirms that iodide depletion is occurring not only within ozone's reactodiffusive depth, which is on the order of microns for environmental conditions, but also deeper into the solution as well. Best model-measurement agreement arises when some degree of nondiffusive mixing is occurring in the solution, transporting iodide from deeper in the solution to a thin, diffusively mixed upper layer. If such mixing occurs rapidly in the environment, iodide depletion is unlikely to reduce ozone dry deposition rates. Unrealistically high bulk-to-interface partitioning of iodide is required for the model to predict a substantial interfacial component to the reaction, indicating that the Langmuir-Hinshelwood mechanism is not dominant under environmental conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA