Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nature ; 546(7658): 376-380, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28562588

RESUMEN

Diarrhoeal disease is responsible for 8.6% of global child mortality. Recent epidemiological studies found the protozoan parasite Cryptosporidium to be a leading cause of paediatric diarrhoea, with particularly grave impact on infants and immunocompromised individuals. There is neither a vaccine nor an effective treatment. Here we establish a drug discovery process built on scalable phenotypic assays and mouse models that take advantage of transgenic parasites. Screening a library of compounds with anti-parasitic activity, we identify pyrazolopyridines as inhibitors of Cryptosporidium parvum and Cryptosporidium hominis. Oral treatment with the pyrazolopyridine KDU731 results in a potent reduction in intestinal infection of immunocompromised mice. Treatment also leads to rapid resolution of diarrhoea and dehydration in neonatal calves, a clinical model of cryptosporidiosis that closely resembles human infection. Our results suggest that the Cryptosporidium lipid kinase PI(4)K (phosphatidylinositol-4-OH kinase) is a target for pyrazolopyridines and that KDU731 warrants further preclinical evaluation as a drug candidate for the treatment of cryptosporidiosis.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/antagonistas & inhibidores , Criptosporidiosis/tratamiento farmacológico , Criptosporidiosis/parasitología , Cryptosporidium/efectos de los fármacos , Cryptosporidium/enzimología , Pirazoles/farmacología , Piridinas/farmacología , Animales , Animales Recién Nacidos , Bovinos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Huésped Inmunocomprometido , Interferón gamma/deficiencia , Interferón gamma/genética , Masculino , Ratones , Ratones Noqueados , Pirazoles/química , Pirazoles/farmacocinética , Piridinas/química , Piridinas/farmacocinética , Ratas , Ratas Wistar
2.
Antimicrob Agents Chemother ; 64(12)2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-32958712

RESUMEN

Monophosphate prodrug analogs of 2'-deoxy-2'-fluoro-2'-C-methylguanosine have been reported as potent inhibitors of hepatitis C virus (HCV) RNA-dependent RNA polymerase. These prodrugs also display potent anti-dengue virus activities in cellular assays although their prodrug moieties were designed to produce high levels of triphosphate in the liver. Since peripheral blood mononuclear cells (PBMCs) are among the major targets of dengue virus, different prodrug moieties were designed to effectively deliver 2'-deoxy-2'-fluoro-2'-C-methylguanosine monophosphate prodrugs and their corresponding triphosphates into PBMCs after oral administration. We identified a cyclic phosphoramidate, prodrug 17, demonstrating well-balanced anti-dengue virus cellular activity and in vitro stability profiles. We further determined the PBMC concentration of active triphosphate needed to inhibit virus replication by 50% (TP50). Compound 17 was assessed in an AG129 mouse model and demonstrated 1.6- and 2.2-log viremia reductions at 100 and 300 mg/kg twice a day (BID), respectively. At 100 mg/kg BID, the terminal triphosphate concentration in PBMCs exceeded the TP50 value, demonstrating TP50 as the target exposure for efficacy. In dogs, oral administration of compound 17 resulted in high PBMC triphosphate levels, exceeding the TP50 at 10 mg/kg. Unfortunately, 2-week dog toxicity studies at 30, 100, and 300 mg/kg/day showed that "no observed adverse effect level" (NOAEL) could not be achieved due to pulmonary inflammation and hemorrhage. The preclinical safety results suspended further development of compound 17. Nevertheless, present work has proven the concept that an efficacious monophosphate nucleoside prodrug could be developed for the potential treatment of dengue virus infection.


Asunto(s)
Dengue , Guanosina/análogos & derivados , Profármacos , Amidas , Animales , Antivirales/farmacología , Dengue/tratamiento farmacológico , Perros , Femenino , Hepacivirus , Leucocitos Mononucleares , Masculino , Ácidos Fosfóricos , Profármacos/farmacología , Profármacos/uso terapéutico
3.
Antimicrob Agents Chemother ; 60(5): 2858-63, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26926645

RESUMEN

Two Plasmodium PI4 kinase (PI4K) inhibitors, KDU691 and LMV599, were selected for in vivo testing as causal prophylactic and radical-cure agents for Plasmodium cynomolgi sporozoite-infected rhesus macaques, based on their in vitro activity against liver stages. Animals were infected with P. cynomolgi sporozoites, and compounds were dosed orally. Both the KDU691 and LMV599 compounds were fully protective when administered prophylactically, and the more potent compound LMV599 achieved protection as a single oral dose of 25 mg/kg of body weight. In contrast, when tested for radical cure, five daily doses of 20 mg/kg of KDU691 or 25 mg/kg of LMV599 did not prevent relapse, as all animals experienced a secondary infection due to the reactivation of hypnozoites in the liver. Pharmacokinetic data show that LMV599 achieved plasma exposure that was sufficient to achieve efficacy based on our in vitro data. These findings indicate that Plasmodium PI4K is a potential drug target for malaria prophylaxis but not radical cure. Longer in vitro culture systems will be required to assess these compounds' activity on established hypnozoites and predict radical cure in vivo.


Asunto(s)
Antimaláricos/uso terapéutico , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/parasitología , Plasmodium vivax/patogenicidad , Animales , Macaca mulatta , Ratones , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Plasmodium vivax/efectos de los fármacos , Esporozoítos/efectos de los fármacos
4.
J Virol ; 89(16): 8233-44, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26018165

RESUMEN

The four serotypes of dengue virus (DENV-1 to -4) represent the most prevalent mosquito-borne viral pathogens in humans. No clinically approved vaccine or antiviral is currently available for DENV. Here we report a spiropyrazolopyridone compound that potently inhibits DENV both in vitro and in vivo. The inhibitor was identified through screening of a 1.8-million-compound library by using a DENV-2 replicon assay. The compound selectively inhibits DENV-2 and -3 (50% effective concentration [EC50], 10 to 80 nM) but not DENV-1 and -4 (EC50,>20 M). Resistance analysis showed that a mutation at amino acid 63 of DENV-2 NS4B (a nonenzymatic transmembrane protein and a component of the viral replication complex) could confer resistance to compound inhibition. Genetic studies demonstrate that variations at amino acid 63 of viral NS4B are responsible for the selective inhibition of DENV-2 and -3. Medicinal chemistry improved the physicochemical properties of the initial "hit" (compound 1), leading to compound 14a, which has good in vivo pharmacokinetics. Treatment of DENV-2-infected AG129 mice with compound 14a suppressed viremia, even when the treatment started after viral infection. The results have proven the concept that inhibitors of NS4B could potentially be developed for clinical treatment of DENV infection. Compound 14a represents a potential preclinical candidate for treatment of DENV-2- and -3-infected patients.


Asunto(s)
Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Descubrimiento de Drogas , Compuestos de Espiro/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Animales , Línea Celular , Cricetinae , Humanos , Compuestos de Espiro/química
5.
Antimicrob Agents Chemother ; 59(9): 5316-23, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26100695

RESUMEN

Alleviating the burden of tuberculosis (TB) requires an understanding of the genetic basis that determines the emergence of drug-resistant mutants. PA-824 (pretomanid) is a bicyclic nitroimidazole class compound presently undergoing the phase III STAND clinical trial, despite lacking identifiable genetic markers for drug-specific resistant Mycobacterium tuberculosis. In the present study, we aimed to characterize the genetic polymorphisms of spontaneously generated PA-824-resistant mutant strains by surveying drug metabolism genes for potential mutations. Of the 183 independently selected PA-824-resistant M. tuberculosis mutants, 83% harbored a single mutation in one of five nonessential genes associated with either PA-824 prodrug activation (ddn, 29%; fgd1, 7%) or the tangential F420 biosynthetic pathway (fbiA, 19%; fbiB, 2%; fbiC, 26%). Crystal structure analysis indicated that identified mutations were specifically located within the protein catalytic domain that would hinder the activity of the enzymes required for prodrug activation. This systematic analysis conducted of genotypes resistant to PA-824 may contribute to future efforts in monitoring clinical strain susceptibility with this new drug therapy.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/genética , Mycobacterium tuberculosis/efectos de los fármacos , Nitroimidazoles/farmacología , Nitrorreductasas/genética , Nitrorreductasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/genética , Mutación , Mycobacterium tuberculosis/genética , Nitrorreductasas/química , Polimorfismo Genético/genética , Estructura Secundaria de Proteína
6.
Antimicrob Agents Chemother ; 59(2): 1200-10, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25487807

RESUMEN

Limited information is available on the pharmacokinetic (PK) and pharmacodynamic (PD) parameters driving the efficacy of antimalarial drugs. Our objective in this study was to determine dose-response relationships of a panel of related spiroindolone analogs and identify the PK-PD index that correlates best with the efficacy of KAE609, a selected class representative. The dose-response efficacy studies were conducted in the Plasmodium berghei murine malaria model, and the relationship between dose and efficacy (i.e., reduction in parasitemia) was examined. All spiroindolone analogs studied displayed a maximum reduction in parasitemia, with 90% effective dose (ED90) values ranging between 6 and 38 mg/kg of body weight. Further, dose fractionation studies were conducted for KAE609, and the relationship between PK-PD indices and efficacy was analyzed. The PK-PD indices were calculated using the in vitro potency against P. berghei (2× the 99% inhibitory concentration [IC99]) as a threshold (TRE). The percentage of the time in which KAE609 plasma concentrations remained at >2× the IC99 within 48 h (%T>TRE) and the area under the concentration-time curve from 0 to 48 h (AUC0-48)/TRE ratio correlated well with parasite reduction (R2=0.97 and 0.95, respectively) but less so for the maximum concentration of drug in serum (Cmax)/TRE ratio (R2=0.88). The present results suggest that for KAE609 and, supposedly, for its analogs, the dosing regimens covering a T>TRE of 100%, AUC0-48/TRE ratio of 587, and a Cmax/TRE ratio of 30 are likely to result in the maximum reduction in parasitemia in the P. berghei malaria mouse model. This information could be used to prioritize analogs within the same class of compounds and contribute to the design of efficacy studies, thereby facilitating early drug discovery and lead optimization programs.


Asunto(s)
Antimaláricos/farmacocinética , Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/patogenicidad , Animales , Modelos Animales de Enfermedad , Femenino , Malaria/sangre , Ratones
7.
J Antimicrob Chemother ; 70(3): 857-67, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25587994

RESUMEN

OBJECTIVES: The discovery and development of TB drugs has met limited success, with two new drugs approved over the last 40 years. Part of the difficulty resides in the lack of well-established in vitro or in vivo targets of potency and physicochemical and pharmacokinetic parameters. In an attempt to benchmark and compare such properties for anti-TB agents, we have experimentally determined and compiled these parameters for 36 anti-TB compounds, using standardized and centralized assays, thus ensuring direct comparability across drugs and drug classes. METHODS: Potency parameters included growth inhibition, cidal activity against growing and non-growing bacteria and activity against intracellular mycobacteria. Pharmacokinetic parameters included basic physicochemical properties, solubility, permeability and metabolic stability. We then attempted to establish correlations between physicochemical, in vitro and in vivo pharmacokinetic and pharmacodynamic indices to tentatively inform future drug discovery efforts. RESULTS: Two-thirds of the compounds tested showed bactericidal and intramacrophage activity. Most compounds exhibited favourable solubility, permeability and metabolic stability in standard in vitro pharmacokinetic assays. An analysis of human pharmacokinetic parameters revealed associations between lipophilicity and volume of distribution, clearance, plasma protein binding and oral bioavailability. Not surprisingly, most compounds with favourable pharmacokinetic properties complied with Lipinski's rule of five. CONCLUSIONS: However, most attempts to detect in vitro-in vivo correlations were unsuccessful, emphasizing the challenges of anti-TB drug discovery. The objective of this work is to provide a reference dataset for the TB drug discovery community with a focus on comparative in vitro potency and pharmacokinetics.


Asunto(s)
Antituberculosos/farmacología , Antituberculosos/farmacocinética , Mycobacterium tuberculosis/efectos de los fármacos , Animales , Antituberculosos/química , Línea Celular , Fenómenos Químicos , Estabilidad de Medicamentos , Macrófagos/microbiología , Ratones , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Permeabilidad , Solubilidad
8.
Science ; 380(6652): 1349-1356, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37384702

RESUMEN

Millions who live in Latin America and sub-Saharan Africa are at risk of trypanosomatid infections, which cause Chagas disease and human African trypanosomiasis (HAT). Improved HAT treatments are available, but Chagas disease therapies rely on two nitroheterocycles, which suffer from lengthy drug regimens and safety concerns that cause frequent treatment discontinuation. We performed phenotypic screening against trypanosomes and identified a class of cyanotriazoles (CTs) with potent trypanocidal activity both in vitro and in mouse models of Chagas disease and HAT. Cryo-electron microscopy approaches confirmed that CT compounds acted through selective, irreversible inhibition of trypanosomal topoisomerase II by stabilizing double-stranded DNA:enzyme cleavage complexes. These findings suggest a potential approach toward successful therapeutics for the treatment of Chagas disease.


Asunto(s)
Enfermedad de Chagas , Inhibidores de Topoisomerasa II , Triazoles , Trypanosoma , Tripanosomiasis Africana , Animales , Humanos , Ratones , Enfermedad de Chagas/tratamiento farmacológico , Microscopía por Crioelectrón , ADN-Topoisomerasas de Tipo II/metabolismo , Trypanosoma/efectos de los fármacos , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/uso terapéutico , Triazoles/química , Triazoles/farmacología , Triazoles/uso terapéutico , Tripanosomiasis Africana/tratamiento farmacológico , Evaluación Preclínica de Medicamentos
9.
Proc Natl Acad Sci U S A ; 106(48): 20435-9, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19918064

RESUMEN

Dengue virus (DENV), a mosquito-borne flavivirus, is a major public health threat. The virus poses risk to 2.5 billion people worldwide and causes 50 to 100 million human infections each year. Neither a vaccine nor an antiviral therapy is currently available for prevention and treatment of DENV infection. Here, we report a previously undescribed adenosine analog, NITD008, that potently inhibits DENV both in vitro and in vivo. In addition to the 4 serotypes of DENV, NITD008 inhibits other flaviviruses, including West Nile virus, yellow fever virus, and Powassan virus. The compound also suppresses hepatitis C virus, but it does not inhibit nonflaviviruses, such as Western equine encephalitis virus and vesicular stomatitis virus. A triphosphate form of NITD008 directly inhibits the RNA-dependent RNA polymerase activity of DENV, indicating that the compound functions as a chain terminator during viral RNA synthesis. NITD008 has good in vivo pharmacokinetic properties and is biologically available through oral administration. Treatment of DENV-infected mice with NITD008 suppressed peak viremia, reduced cytokine elevation, and completely prevented the infected mice from death. No observed adverse effect level (NOAEL) was achieved when rats were orally dosed with NITD008 at 50 mg/kg daily for 1 week. However, NOAEL could not be accomplished when rats and dogs were dosed daily for 2 weeks. Nevertheless, our results have proved the concept that a nucleoside inhibitor could be developed for potential treatment of flavivirus infections.


Asunto(s)
Antivirales/farmacología , Virus del Dengue/metabolismo , Dengue/tratamiento farmacológico , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Viremia/tratamiento farmacológico , Adenosina/química , Animales , Antivirales/farmacocinética , Antivirales/uso terapéutico , Chlorocebus aethiops , Perros , Ensayo de Inmunoadsorción Enzimática , Femenino , Masculino , Ratones , Estructura Molecular , Nivel sin Efectos Adversos Observados , Ratas , Células Vero
10.
J Med Chem ; 65(17): 11776-11787, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35993839

RESUMEN

Human African Trypanosomiasis (HAT) is a vector-borne disease caused by kinetoplastid parasites of the Trypanosoma genus. The disease proceeds in two stages, with a hemolymphatic blood stage and a meningo-encephalic brain stage. In the latter stage, the parasite causes irreversible damage to the brain leading to sleep cycle disruption and is fatal if untreated. An orally bioavailable treatment is highly desirable. In this study, we present a brain-penetrant, parasite-selective 20S proteasome inhibitor that was rapidly optimized from an HTS singleton hit to drug candidate compound 7 that showed cure in a stage II mouse efficacy model. Here, we describe hit expansion and lead optimization campaign guided by cryo-electron microscopy and an in silico model to predict the brain-to-plasma partition coefficient Kp as an important parameter to prioritize compounds for synthesis. The model combined with in vitro and in vivo experiments allowed us to advance compounds with favorable unbound brain-to-plasma ratios (Kp,uu) to cure a CNS disease such as HAT.


Asunto(s)
Quinolinas , Trypanosoma , Tripanosomiasis Africana , Animales , Microscopía por Crioelectrón , Modelos Animales de Enfermedad , Humanos , Ratones , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Quinolinas/farmacología , Quinolinas/uso terapéutico , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología
11.
J Med Chem ; 65(5): 3798-3813, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35229610

RESUMEN

A series of 5-aryl-2-amino-imidazothiadiazole (ITD) derivatives were identified by a phenotype-based high-throughput screening using a blood stage Plasmodium falciparum (Pf) growth inhibition assay. A lead optimization program focused on improving antiplasmodium potency, selectivity against human kinases, and absorption, distribution, metabolism, excretion, and toxicity properties and extended pharmacological profiles culminated in the identification of INE963 (1), which demonstrates potent cellular activity against Pf 3D7 (EC50 = 0.006 µM) and achieves "artemisinin-like" kill kinetics in vitro with a parasite clearance time of <24 h. A single dose of 30 mg/kg is fully curative in the Pf-humanized severe combined immunodeficient mouse model. INE963 (1) also exhibits a high barrier to resistance in drug selection studies and a long half-life (T1/2) across species. These properties suggest the significant potential for INE963 (1) to provide a curative therapy for uncomplicated malaria with short dosing regimens. For these reasons, INE963 (1) was progressed through GLP toxicology studies and is now undergoing Ph1 clinical trials.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Malaria Falciparum , Malaria , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Antagonistas del Ácido Fólico/uso terapéutico , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Ratones , Ratones SCID , Plasmodium falciparum
12.
Antimicrob Agents Chemother ; 55(9): 4072-80, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21730119

RESUMEN

We describe a novel translation inhibitor that has anti-dengue virus (DENV) activity in vitro and in vivo. The inhibitor was identified through a high-throughput screening using a DENV infection assay. The compound contains a benzomorphan core structure. Mode-of-action analysis indicated that the compound inhibits protein translation in a viral RNA sequence-independent manner. Analysis of the stereochemistry demonstrated that only one enantiomer of the racemic compound inhibits viral RNA translation. Medicinal chemistry was performed to eliminate a metabolically labile glucuronidation site of the compound to improve its in vivo stability. Pharmacokinetic analysis showed that upon a single subcutaneous dosing of 25 mg/kg of body weight in mice, plasma levels of the compound reached a C(max) (maximum plasma drug concentration) above the protein-binding-adjusted 90% effective concentration (EC(90)) value of 0.96 µM. In agreement with the in vivo pharmacokinetic results, treatment of DENV-infected mice with 25 mg/kg of compound once per day reduced peak viremia by about 40-fold. However, mice treated with 75 mg/kg of compound per day exhibited adverse effects. Collectively, our results demonstrate that the benzomorphan compounds inhibit DENV through suppression of RNA translation. The therapeutic window of the current compounds needs to be improved for further development.


Asunto(s)
Antivirales/farmacología , Antivirales/farmacocinética , Virus del Dengue/efectos de los fármacos , Animales , Antivirales/efectos adversos , Antivirales/química , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Cromatografía Líquida de Alta Presión , Cricetinae , Virus del Dengue/genética , Femenino , Humanos , Ratones , Estructura Molecular , ARN Viral/genética , Ratas , Células Vero
13.
Sci Transl Med ; 13(579)2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536278

RESUMEN

Dengue virus (DENV) is a mosquito-borne flavivirus that poses a threat to public health, yet no antiviral drug is available. We performed a high-throughput phenotypic screen using the Novartis compound library and identified candidate chemical inhibitors of DENV. This chemical series was optimized to improve properties such as anti-DENV potency and solubility. The lead compound, NITD-688, showed strong potency against all four serotypes of DENV and demonstrated excellent oral efficacy in infected AG129 mice. There was a 1.44-log reduction in viremia when mice were treated orally at 30 milligrams per kilogram twice daily for 3 days starting at the time of infection. NITD-688 treatment also resulted in a 1.16-log reduction in viremia when mice were treated 48 hours after infection. Selection of resistance mutations and binding studies with recombinant proteins indicated that the nonstructural protein 4B is the target of NITD-688. Pharmacokinetic studies in rats and dogs showed a long elimination half-life and good oral bioavailability. Extensive in vitro safety profiling along with exploratory rat and dog toxicology studies showed that NITD-688 was well tolerated after 7-day repeat dosing, demonstrating that NITD-688 may be a promising preclinical candidate for the treatment of dengue.


Asunto(s)
Virus del Dengue , Dengue , Animales , Antivirales/uso terapéutico , Dengue/tratamiento farmacológico , Perros , Ratones , Modelos Animales , Ratas , Serogrupo
14.
Antimicrob Agents Chemother ; 54(8): 3255-61, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20516277

RESUMEN

Dengue virus (DENV) is the most prevalent mosquito-borne viral pathogen that infects humans. Neither a vaccine nor an antiviral therapy is currently available for DENV. Here, we report an adenosine nucleoside prodrug that potently inhibits DENV replication both in cell culture and in a DENV mouse model. NITD449 (2'-C-acetylene-7-deaza-7-carbamoyladenosine) was initially identified as a parental compound that inhibits all four serotypes of DENV with low cytotoxicity. However, in vivo pharmacokinetic studies indicated that NITD449 had a low level of exposure in plasma when dosed orally. To increase the oral bioavailability, we covalently linked isobutyric acids to the 3'- and 5'-hydroxyl groups of ribose via ester linkage to NITD449, leading to the prodrug NITD203 (3',5'-O-diisobutyryl-2'-C-acetylene-7-deaza-7-carbamoyl-adenosin). Pharmacokinetic analysis showed that upon oral dosing of the prodrug, NITD203 was readily converted to NITD449, resulting in improved exposure of the parental compound in plasma in both mouse and rat. In DENV-infected AG129 mice, oral dosing of the prodrug at 25 mg/kg of body weight reduced peak viremia by 30-fold. Antiviral spectrum analysis showed that NITD203 inhibited various flaviviruses (DENV, yellow fever virus, and West Nile virus) and hepatitis C virus but not Chikungunya virus (an alphavirus). Mode-of-action analysis, using a luciferase-reporting replicon, indicated that NITD203 inhibited DENV RNA synthesis. Although NITD203 exhibited potent in vitro and in vivo efficacies, the compound could not reach a satisfactory no-observable-adverse-effect level (NOAEL) in a 2-week in vivo toxicity study. Nevertheless, our results demonstrate that a prodrug approach using a nucleoside analog could potentially be developed for flavivirus antiviral therapy.


Asunto(s)
Adenosina/análogos & derivados , Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Dengue/tratamiento farmacológico , Profármacos/farmacología , Replicación Viral/efectos de los fármacos , Adenosina/farmacocinética , Adenosina/farmacología , Adenosina/uso terapéutico , Animales , Antivirales/química , Antivirales/farmacocinética , Antivirales/uso terapéutico , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Dengue/virología , Células Epiteliales/virología , Ésteres/química , Humanos , Ratones , Profármacos/química , Profármacos/farmacocinética , Profármacos/uso terapéutico , Ratas , Células Vero
15.
Antimicrob Agents Chemother ; 54(6): 2603-10, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20350951

RESUMEN

Drug resistance against dihydrofolate reductase (DHFR) inhibitors-such as pyrimethamine (PM)-has now spread to almost all regions where malaria is endemic, rendering antifolate-based malaria treatments highly ineffective. We have previously shown that the di-amino quinazoline QN254 [5-chloro-N'6'-(2,5-dimethoxy-benzyl)-quinazoline-2,4,6-triamine] is active against the highly PM-resistant Plasmodium falciparum V1S strain, suggesting that QN254 could be used to treat malaria in regions with a high prevalence of antifolate resistance. Here, we further demonstrate that QN254 is highly active against Plasmodium falciparum clinical isolates, displaying various levels of antifolate drug resistance, and we provide biochemical and structural evidence that QN254 binds and inhibits the function of both the wild-type and the quadruple-mutant (V1S) forms of the DHFR enzyme. In addition, we have assessed QN254 oral bioavailability, efficacy, and safety in vivo. The compound displays favorable pharmacokinetic properties after oral administration in rodents. The drug was remarkably efficacious against Plasmodium berghei and could fully cure infected mice with three daily oral doses of 30 mg/kg. In the course of these efficacy studies, we have uncovered some dose limiting toxicity at higher doses that was confirmed in rats. Thus, despite its relative in vitro selectivity toward the Plasmodium DHFR enzyme, QN254 does not show the adequate therapeutic index to justify its further development as a single agent.


Asunto(s)
Antimaláricos/farmacología , Antagonistas del Ácido Fólico/farmacología , Plasmodium falciparum/efectos de los fármacos , Quinazolinas/farmacología , Administración Oral , Animales , Antimaláricos/administración & dosificación , Antimaláricos/farmacocinética , Antimaláricos/toxicidad , Disponibilidad Biológica , Resistencia a Medicamentos , Femenino , Antagonistas del Ácido Fólico/administración & dosificación , Antagonistas del Ácido Fólico/farmacocinética , Antagonistas del Ácido Fólico/toxicidad , Humanos , Técnicas In Vitro , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Masculino , Ratones , Modelos Moleculares , Mutación , Pruebas de Sensibilidad Parasitaria , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Pirimetamina/farmacología , Quinazolinas/administración & dosificación , Quinazolinas/farmacocinética , Quinazolinas/toxicidad , Ratas , Ratas Wistar , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/genética
16.
Trop Med Infect Dis ; 5(1)2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32079320

RESUMEN

Current anti-trypanosomal therapies suffer from problems of longer treatment duration, toxicity and inadequate efficacy, hence there is a need for safer, more efficacious and 'easy to use' oral drugs. Previously, we reported the discovery of the triazolopyrimidine (TP) class as selective kinetoplastid proteasome inhibitors with in vivo efficacy in mouse models of leishmaniasis, Chagas Disease and African trypanosomiasis (HAT). For the treatment of HAT, development compounds need to have excellent penetration to the brain to cure the meningoencephalic stage of the disease. Here we describe detailed biological and pharmacological characterization of triazolopyrimidine compounds in HAT specific assays. The TP class of compounds showed single digit nanomolar potency against Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense strains. These compounds are trypanocidal with concentration-time dependent kill and achieved relapse-free cure in vitro. Two compounds, GNF6702 and a new analog NITD689, showed favorable in vivo pharmacokinetics and significant brain penetration, which enabled oral dosing. They also achieved complete cure in both hemolymphatic (blood) and meningoencephalic (brain) infection of human African trypanosomiasis mouse models. Mode of action studies on this series confirmed the 20S proteasome as the target in T. brucei. These proteasome inhibitors have the potential for further development into promising new treatment for human African trypanosomiasis.

17.
ACS Omega ; 5(12): 6967-6982, 2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32258933

RESUMEN

A phenotypic whole cell high-throughput screen against the asexual blood and liver stages of the malaria parasite identified a benzimidazole chemical series. Among the hits were the antiemetic benzimidazole drug Lerisetron 1 (IC50 NF54 = 0.81 µM) and its methyl-substituted analogue 2 (IC50 NF54 = 0.098 µM). A medicinal chemistry hit to lead effort led to the identification of chloro-substituted analogue 3 with high potency against the drug-sensitive NF54 (IC50 NF54 = 0.062 µM) and multidrug-resistant K1 (IC50 K1 = 0.054 µM) strains of the human malaria parasite Plasmodium falciparum. Compounds 2 and 3 gratifyingly showed in vivo efficacy in both Plasmodium berghei and P. falciparum mouse models of malaria. Cardiotoxicity risk as expressed in strong inhibition of the human ether-a-go-go-related gene (hERG) potassium channel was identified as a major liability to address. This led to the synthesis and biological assessment of around 60 analogues from which several compounds with improved antiplasmodial potency, relative to the lead compound 3, were identified.

18.
Nat Microbiol ; 5(10): 1207-1216, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32661312

RESUMEN

The kinetochore is a macromolecular structure that assembles on the centromeres of chromosomes and provides the major attachment point for spindle microtubules during mitosis. In Trypanosoma brucei, the proteins that make up the kinetochore are highly divergent; the inner kinetochore comprises at least 20 distinct and essential proteins (KKT1-20) that include four protein kinases-CLK1 (also known as KKT10), CLK2 (also known as KKT19), KKT2 and KKT3. Here, we report the identification and characterization of the amidobenzimidazoles (AB) protein kinase inhibitors that show nanomolar potency against T. brucei bloodstream forms, Leishmania and Trypanosoma cruzi. We performed target deconvolution analysis using a selection of 29 T. brucei mutants that overexpress known essential protein kinases, and identified CLK1 as a primary target. Biochemical studies and the co-crystal structure of CLK1 in complex with AB1 show that the irreversible competitive inhibition of CLK1 is dependent on a Michael acceptor forming an irreversible bond with Cys 215 in the ATP-binding pocket, a residue that is not present in human CLK1, thereby providing selectivity. Chemical inhibition of CLK1 impairs inner kinetochore recruitment and compromises cell-cycle progression, leading to cell death. This research highlights a unique drug target for trypanosomatid parasitic protozoa and a new chemical tool for investigating the function of their divergent kinetochores.


Asunto(s)
Cinetocoros/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Protozoarias/antagonistas & inhibidores , Trypanosoma brucei brucei/efectos de los fármacos , Animales , Biomarcadores , Ciclo Celular/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Inmunofenotipificación , Cinetocoros/química , Ratones , Conformación Molecular , Simulación de Dinámica Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Protozoarias/química , Relación Estructura-Actividad
19.
Curr Comput Aided Drug Des ; 12(1): 52-61, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26777113

RESUMEN

Poor pharmacokinetic and toxicity profiles are major reasons for the low rate of advancing lead drug candidates into efficacy studies. The In-silico prediction of primary pharmacokinetic and toxicity properties in the drug discovery and development process can be used as guidance in the design of candidates. In-silico parameters can also be used to choose suitable compounds for in-vivo testing thereby reducing the number of animals used in experiments. At the Novartis Institute for Tropical Diseases, a data set has been curated from in-house measurements in the disease areas of Dengue, Tuberculosis and Malaria. Volume of distribution, half-life, total in-vivo clearance, in-vitro human plasma protein binding and in-vivo oral bioavailability have been measured for molecules in the lead optimization stage in each of these three disease areas. Data for the inhibition of the hERG channel using the radio ligand binding dofetilide assay was determined for a set of 300 molecules in these therapeutic areas. Based on this data, Artificial Neural Networks were used to construct In-silico models for each of the properties listed above that can be used to prioritize candidates for lead optimization and to assist in selecting promising molecules for in-vivo pharmacokinetic studies.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacocinética , Dengue/tratamiento farmacológico , Diseño de Fármacos , Malaria/tratamiento farmacológico , Redes Neurales de la Computación , Tuberculosis/tratamiento farmacológico , Animales , Antiinfecciosos/farmacología , Antiinfecciosos/toxicidad , Simulación por Computador , Diseño Asistido por Computadora , Virus del Dengue/efectos de los fármacos , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/metabolismo , Humanos , Ratones , Mycobacterium/efectos de los fármacos , Plasmodium/efectos de los fármacos
20.
Sci Transl Med ; 7(269): 269ra3, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25568071

RESUMEN

New chemotherapeutic agents are urgently required to combat the global spread of multidrug-resistant tuberculosis (MDR-TB). The mycobacterial enoyl reductase InhA is one of the few clinically validated targets in tuberculosis drug discovery. We report the identification of a new class of direct InhA inhibitors, the 4-hydroxy-2-pyridones, using phenotypic high-throughput whole-cell screening. This class of orally active compounds showed potent bactericidal activity against common isoniazid-resistant TB clinical isolates. Biophysical studies revealed that 4-hydroxy-2-pyridones bound specifically to InhA in an NADH (reduced form of nicotinamide adenine dinucleotide)-dependent manner and blocked the enoyl substrate-binding pocket. The lead compound NITD-916 directly blocked InhA in a dose-dependent manner and showed in vivo efficacy in acute and established mouse models of Mycobacterium tuberculosis infection. Collectively, our structural and biochemical data open up new avenues for rational structure-guided optimization of the 4-hydroxy-2-pyridone class of compounds for the treatment of MDR-TB.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Oxidorreductasas/antagonistas & inhibidores , Animales , Antituberculosos/química , Proteínas Bacterianas/metabolismo , Fenómenos Biofísicos/efectos de los fármacos , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Inhibidores Enzimáticos/química , Ratones Endogámicos BALB C , Modelos Moleculares , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Oxidorreductasas/metabolismo , Piridinas/química , Piridinas/farmacología , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA